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Abstract

In spite of its appeal, anisotropic damage is being introduced in the constitutive equations of engineering materials at
a slow pace. One of the main reasons is the difficulty of establishing general evolution laws. This originates from the
lack of physical meaning of the thermodynamic forces conjugate to the damage variables, which finally constitute the
space in which loading functions and ‘damage rules’ are defined. In this article, the authors propose a new ‘pseudo-
logarithmic’ rate of damage, which has the advantage of exhibiting a simple and meaningful conjugate force with very
convenient properties. A main advantage is the physical interpretation of the corresponding “damage rule”, which
clearly separates the effects of its volumetric part, responsible for isotropic degradation, from its deviatoric part, re-
sponsible for anisotropic effects. This new concept is applied to a second-order tensor secant formulation, which is
developed using traditional concepts of continuum damage mechanics within the general theoretical framework of
elastic degradation and damage recently proposed by the authors. A first example of anisotropic damage formulation
based on these concepts, the ‘generalized pseudo-Rankine’ model, is presented and verified with analytical and nu-
merical examples in a companion ‘Part II” paper. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Since the introduction of the damage concept (Kachanov, 1958), models involving elastic degradation
and damage have become progressively more popular and are nowadays often used for the constitutive
description of quasi-brittle materials, such as concrete, rocks, ceramics, etc. (Dougill, 1976; Hueckel and
Maier, 1977; Maier and Hueckel, 1979; Dragon and Mréz, 1979; Cordebois and Sidoroff, 1982; Ladeveze,
1983; Mazars and Lemaitre, 1984; Han and Chen, 1986; Ortiz, 1985; Sim¢é and Ju, 1987; Chow and Wang,
1987a; Yazdani and Schreyer, 1988; Ju, 1989; Mazars and Pijaudier-Cabot, 1989; Chaboche, 1990; La
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Borderie et al., 1990; Chaboche, 1993; Lubarda et al., 1994; Carol and Willam, 1996). For a realistic
description of the material behavior, many of these models incorporate additional features, such as different
behavior in tension and compression, stiffness recovery due to microcrack closure, combination of de-
gradation and plasticity, etc. From the theoretical viewpoint, however, all these features are not central to
the ‘core’ description of elastic degradation and damage itself, which is the subject of the present study.

A detailed examination of the existing formulations of elastic degradation shows the need for further
theoretical developments. On the one hand, terminology and notation are quite different from one author
to another, making comparison time-consuming and often unclear. On the other hand, once the different
formulations have been compared, it becomes apparent that significant theoretical gaps still exist, especially
when anisotropic degradation is considered. In the recent past, these considerations motivated the authors
to propose a unified theoretical framework for elastic degradation and damage (Carol et al., 1994). This
proposal was based on well-known concepts and notations used traditionally in engineering elasto-plas-
ticity, and led to very similar expressions for tangential stiffness and other ingredients of the constitutive
theory. The benefits are significant: standardization provides a common language that is fundamental to
real progress in any field; having similar expressions it is possible to take advantage of theoretical devel-
opments in elasto-plasticity, such as for instance closed-form solutions of strain localization analysis (Rizzi
et al., 1995, 1996; Carol and Willam, 1997); moreover, combining damage and plasticity becomes equiv-
alent to the formulation of multi-surface plasticity.

The theoretical framework of Carol et al. (1994) was developed in all generality with regard to the
number and nature of the damage variables, and is briefly summarized in Section 2. In that publication, the
authors have specified the general theory for the simplest type of elastic degradation: the “(1 — D)” scalar
damage formulation. In the present article, the possibilities of that constitutive framework are developed
further by focusing on the next level of complexity, i.e. anisotropic elastic degradation of initially isotropic
materials, based on second-order damage tensors. Within this topic, new efforts are directed towards three
objectives: first to establish a ‘basic’ secant anisotropic formulation, which emerges naturally from the
general theory; second (and the most important), to provide a simple and effective way to define appro-
priate and consistent evolution laws; and third, to implement a simple model based on these unifying
concepts and present some numerical results.

The ‘basic’ secant formulation encompasses the simplest forms of isotropic and anisotropic damage
descriptions that emerge most often in the existing literature, and at the same time appear to be theoretically
consistent and compatible to each other (i.e., the isotropic is a particular case of the anisotropic formu-
lation). Most scalar damage models in the literature (Leckie, 1978; Lemaitre and Chaboche, 1978; Mazars
and Lemaitre, 1984; Resende, 1987; Simo and Ju, 1987; Ju, 1989; Franziskonis and Desai, 1987; Neilsen and
Schreyer, 1992) are of the traditional “(1 — D)” type, which in this article is called ‘basic’ isotropic
formulation and is described in Section 3. For anisotropic degradation, a number of models have been
proposed, using damage vectors initially (Davidson and Stevens, 1973; Krajcinovic and Fonseka, 1981;
Suaris and Shah, 1984; Costin, 1985), most often second-order tensors (Vakulenko and Kachanov, 1971;
Dragon and Mréz, 1979; Kachanov, 1980; Murakami and Ohno, 1980; Betten, 1983; Oda, 1983; Chow and
Wang, 1987b; Murakami, 1987; Suaris, 1987; Shen et al., 1989; Valanis, 1990; Hansen and Schreyer, 1992;
Swoboda and Ito, 1993; Voyiadjis and Park, 1997), and even fourth- or eighth-order tensors (Chaboche,
1978, 1981; Lemaitre and Chaboche, 1990; Ortiz, 1985; Sim¢é and Ju, 1987; Yazdani and Schreyer, 1988;
Lubarda and Krajcinovic, 1993). The simplest representation of anisotropic degradation, which seems to be
common to many proposals, and which satisfies at the same time basic consistency requirements, is based on
the second-order damage tensor D;; (direct generalization of the scalar D), or alternatively on the equivalent
integrity tensor J)U = d;; — D;; (Valanis, 1990), where J;; is the Kronecker delta. Although it has not been
described in general in this way, the ‘basic’ anisotropic formulation presented in Section 4 is derived using
traditional concepts in continuum damage mechanics, such as effective stress, effective strain and energy
equivalence, with resulting secant relations that are equivalent to those found in the literature.
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It is not difficult to verify that the ‘basic’ formulation of Sections 3 and 4 represent a restricted form of
damage in the isotropic and anisotropic ranges, which does not include some relatively simple forms
of elastic degradation such as the ‘von Mises’ type (Ju, 1990; Neilsen and Schreyer, 1992). For the sake of
clarity, however, attention in this article is focused on developing evolution laws and illustrative examples,
and this is done on the ‘basic’ formulation. An ‘extended’ formulation with more general forms of both
isotropic and anisotropic secant relations, which are still compatible with the general approach proposed, is
developed in a separate article (Carol et al., 1999).

What can be considered to be well established in anisotropic degradation is often limited to the secant
relations of stiffness or compliance in terms of the damage variables. In analogy to plasticity, a closed
constitutive formulation also requires a loading function, a ‘damage rule’ and some hardening/softening
laws. These are normally defined in the space of the thermodynamic ‘forces’ conjugate to the damage
variables. With the usual second-order damage or integrity tensor, the conjugate forces turn out to be a
product of stress, strain and damage tensor components, combined with the elastic constants, which does
not exhibit a clear physical meaning (Valanis, 1990; Hansen and Schreyer, 1992). This makes it difficult to
foresee the consequences of any specific choice of loading surface, damage rule, etc. As a remedy, the
authors recently proposed to consider a new pseudo-log rate of the damage tensor (Carol et al., 1998), which
exhibits great practical advantages, such as a very simple, physically meaningful conjugate force and a
number of interesting properties concerning its volumetric—deviatoric decomposition and invariants. These
new ideas are presented and are further developed in detail in Sections 5 and 6.

Finally, Section 7 includes some concluding remarks, which summarize the new theoretical develop-
ments presented. Application of these developments to the formulation of a new, specific, model for an-
isotropic damage and its analytical and numerical verification is the topic of a companion Part II article
(Carol et al., 2000).

2. Theoretical framework for elastic degradation and damage

A general theoretical framework to formulate elastic degradation and damage at small strains was
presented by the authors in Carol et al. (1994). This framework is briefly summarized in this section.

2.1. ‘Plasticity format’ of elastic degradation

The most characteristic equation of elastic degradation is the secant stress—strain relation:
Oij = Lijjki€r O €5 = CijpiOpy- (la, b)

Ejji and Cj; denote the components of the elastic secant fourth-order stiffness and compliance tensors E
and C, which are assumed constant during unloading and reloading, and must remain symmetric to avoid
spurious energy dissipation or generation under closed stress or strain paths in that range of behavior.
Stiffness and compliance tensors are inverse to each other, i.e.,

EijpgCogit = CijpgEpgt = Ly Ly = (01 + 0ud). (2a,b)

Analogous to the concept of a plastic threshold condition, a loading function F is introduced to define an
elastic domain in stress space F(o,p) < 0 in which stiffness remains constant. Here, p denotes the set of
variables that defines the current configuration of the elastic domain. Once the loading surface F =0 is
reached, further degradation may take place, E,-jkl # 0, accompanied by increments of degrading strain ef‘j
The degrading strain rate is defined as the excess strain rate beyond the value that corresponds to the
increment of stress according to the current secant stiffness (Fig. 1). With these definitions, the following set

of rate equations describes progressive elastic degradation:
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Fig. 1. Elastic and degrading strain increments.
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where m defines the direction of the degrading strain rates (4a), optionally expressed in terms of the gradient
of a potential Q(a), (4b), and 7 is the inelastic multiplier analogous to the plastic multiplier in traditional
elasto-plasticity. Eq. (5a) represents the consistency condition, and H is the hardening/softening modulus.
Egs. (3)—(5) are only valid for further loading, i.e. when F = 0, F=0and /> 0. The alternatlve case is
unloading, with F < 0 and / = 0, in which only Eqgs. (3) and (4) would be valid leading to ¢}, =0 and
6;j = Ejjuéw. Assuming that we are on the loading surface ' = 0, the two cases may be distinguished using
the complementarity (Kuhn-Tucker) conditions:
F<0, 1>0, Fi=0. (6a,b,c)
Egs. (3)—(5) may be combined in the traditional way of plasticity, yielding the following expressions for
the degradation multiplier and the tangent stiffness:

;s 1 . -
A= ﬁ NeaEcari€rr, H=H+ npquqrxmrsa (73, b)
1
Ez/al?leklv E;?/?z = Ejju — = EijasmapncaEcar - (8a,b)

H

Similarly to plasticity, the definitions of F and m are subjected to the constraint 4 > 0 (i.e. H > —n: E : m)
such that the denominator in Egs. (7a) and (8b) remains strictly positive. The model is called associated in
the stress space when m is proportional to n, and consequently, the tangent stiffness exhibits major sym-
metry. If m is derived from a potential Q, associativity may be alternatively stated as Q = F.
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2.2. Degradation rule for compliance

Previous Egs. (3)—(8) have the same form as classical plasticity except for the secant stiffness instead of
the initial stiffness, and the degrading strain instead of the plastic strain. In contrast to plasticity, however,
those equations (and the additional definitions inherent to H) are not sufficient to define the evolution of an
elastic-degrading model, since no evolution law has been specified for the (variable) secant stiffness or
compliance. In order to do that, Eq. (1) can be differentiated and compared to Eq. (3). Using
Eyjtt = —E;jpgCparsEvstr (obtained from differentiation of Eq. (2a)), this leads to

-d -d .
Eique = _Eijklekl or epq = Cpqrso-rsv (921, b)

which relates the secant compliance and degrading strain rates. When the first is known, the second follows
(but not the opposite). A generalized flow or degradation rule for the secant compliance can be formulated
to define the evolution (growth) of degrading strains

Cju = iMyy and  my; = Moy, (10a,b)

where / specifies the magnitude and M the direction of the rate of change of C. Eq. (10b) follows from
replacing Egs. (4a) and (10a) into Eq. (9b). This growth equation (essentially equivalent to Eq. (2.7) in
Hueckel and Maier (1977) and to Eq. (3.36) in Ortiz (1985)) indicates that once the degradation rule has
been established, the corresponding flow rule for degrading strains follows automatically. The requirement
that E and C remain symmetric restricts M to be symmetric. With the specification of the degradation rule,
the elastic-degrading formulation is closed. The final set of constitutive equations strictly required to in-
tegrate the material response for a prescribed strain history reduces to Egs. (7), (10a) and (1) (and some
appropriate hardening/softening laws inherent to H). In addition, the tangential stiffness given by Eq. (8)
with m defined in Eq. (10b), may be needed for the incremental-iterative procedures, or in the analysis of
strain localization properties based on the acoustic tensor (Rizzi et al., 1995, 1996; Carol and Willam,
1997).

2.3. Conjugate forces and associativity

Simple thermodynamic concepts lead to the definition of a fourth-order “force” tensor, conjugate to the
increments of compliance in a similar way as stress is the conjugate variable to strain. For a constant
temperature and disregarding effects other than mechanical, the energy stored per unit volume u may be
assimilated to the energy that would be recovered upon unloading, which, at any given time, may be ex-
pressed in terms of current secant stiffness or compliance:

_1 1
u = 3€;Eijuen = 505Cijki 0w (11a,b)

By differentiation, we obtain the balance of energies exchanged in a unit volume during a time increment d¢
(first principle):

.- . 1 .
u = 0;€; + 56 E €. (12)

In this equation, it is possible to identify o;;¢; as the external work supply and « as the increase of elastic
energy. Therefore, it is immediate to define the dissipation rate as the difference, which must remain non-
negative (second principle):

* _ . L 1 1
d = o€ — it = —5€;iEnen = 30;Cijri o = 0. (13)

The conjugate force —Y is then identified as

d=(~Yu)Cyr,  —Yyu =30,0u- (14a,b)
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With —Y it is possible to define the gradient of F in the compliance space and relate it to the gradient in
stress space:

oF

N = e —,
Mo (—Yu)

njj = Nijki Ok - (15a,b)

The concept of associativity can also be introduced in the compliance space, when M and N are parallel.
Associativity in compliance space implies associativity in the stress space but not the opposite (Carol et al.,
1994).

2.4. Elastic-damage formulation

In the formulation described in Sections 2.1 and 2.2, the degradation state is characterized by the secant
compliance (or stiffness) tensor itself, with 21 independent components. The corresponding evolution laws
must also involve 21 components (those of the tensor M;;,). Alternatively, it is reasonable to assume a
reduced set of variables, which still fully characterize the state of degradation or damage in the material for
which simple evolution laws can be postulated. These are the damage variables, 9., the number and nature
of which (scalar, vectorial or tensorial) does not need to be specified for the development of the general
theory (the subscript * represents the desired number of indices). According to that concept, one may
write

0Cij
D,,
09,

Cij = CijkI(CO 9.), Cijkl =

pgrs? =7 * (1637 b)
where C?jk, is the initial compliance, C;j; are a set of known, continuous and differentiable functions, and
repetition of subscript * implies summation over all the indices represented by the symbol. A damage rule
for 2, may be formulated, and its relation to the evolution rule for compliance may be established as

6C,-_,—k,
5o Mo (17a,b)

9* — /’Lﬂ*y Mjkl =
Similar to Eqgs. (4a) and (10a), 4 specifies the intensity and .#, the direction of the increment of the
damage variables in the damage space. The final equations for the evolution of elastic damage are the same
as for the elastic degradation where M, is replaced by .Z.. .
Similar thermodynamic concepts as before lead to the conjugate force —%, to the damage variable Z,,
which is

, oC;;
W, = Yy a@jk! (18)
and allows one to define the gradient of F in the damage space and its relation to N:
) oF 0Ciju
JV* :a(_@*), Mjk[:T%JV*. (19371’))

Associativity in the damage space occurs when ./, is proportional to .#,, and it also implies associativity
at compliance and stress levels. Further details of this theoretical framework, as well as the dual formu-
lation in strain space and the equivalences between both versions of the theory, may be found in Carol et al.
(1994).
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3. ‘Basic’ isotropic damage

Using the theoretical framework described in Section 2, it is possible to formulate a variety of damage
models. The simplest ones are those in which the initial stiffness (and therefore also the compliance) is
isotropic, and its degraded counterpart also maintains isotropy. In particular, the traditional “(1 — D)”
scalar damage model is that one in which all the components of the stiffness tensor are reduced with the
same coefficient (1 — D), where D is a damage variable varying from 0 to 1. In Carol et al. (1994), a strain-
based formulation of this type was derived in the general framework presented, and it was shown that a
number of models available in the literature (Mazars and Lemaitre, 1984; Sim¢6 and Ju, 1987; Neilsen and
Schreyer, 1992) were included as particular cases. Here, the derivation is presented in stress space and with
more convenient choices of inelastic multiplier and damage variable, which makes expressions look simpler
and allows us to introduce the concept of logarithmic scalar damage, although the resulting formulation is
fully equivalent.

First, consider the general form of the isotropic stiffness and compliance tensors:

1+v
2E

where A and G are the Lamé constants, linked to Young s modulus E and Poisson’s ratio v by the classical
relations

Eyj = Ad;;01 + G (840 + 8udi), Ciji = (5,/5k/ (0udji + 6:udi), (20a,b)

VE E
BT A T

In the “(1 — D)” scalar damage model, the following well-known expressions are assumed for the secant
stiffness and its inverse compliance:

(21a,b)

1 CO

Eiji = (1 D)Eglm ijkl 1_ p k> (22a, b)

where E? s and c? i are the 1n1t1al stiffness and compliance tensors given by Eq. (20a) with initial values of
elastic constants /10 G or E°, V0. ie.

1+°

Bl = A%500 + GO (040 + 0uds),  Cly = f]o 0 + = (0w + 00 (23a,b)
Differentiating Eq. (22b) yields
Ciu = (1_’1))2 Chu- (24)
A new logarithmic scalar damage variable L is defined:
9, =scalar = L = lnﬁ, D=1-¢t, (25a,b,¢)
which allows us to rewrite Eq. (22) as
Eju = ¢ "Epy,,  Cyu=e"Cly. (26a,b)

While the conventional damage variable D varies between 0 and 1, the logarithmic damage L varies be-
tween 0 and oo as represented in Fig. 2a and b. Evolution of the secant Young’s modulus with L, which is
implicit in previous equations (i.e. E = e “E"), is represented in Fig. 2c.

Differentiating Eq. (26b), we can rewrite Eq. (24) as

Cijk/ = Le Cgkl LCW. (27)
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Fig. 2. Logarithmic scalar damage L: (a) relation to traditional scalar damage L(D), (b) inverse relation D(L), and (c) relation E(L)/E°.

With previous definitions, it is possible to use L itself as inelastic multiplier:

;. D

This leads to the identification of the m terms of the general theory, which take the convenient simple form
of the current value of compliance and strain:
0Cijw  0Cy
0. oA

ijkl s ﬂ* = 1, (293, b)

M = Ciju, m;; = Cijpi0p = €. (29¢,d)

The dissipation equation leads to the force —% conjugate to the logarithmic damage L, which turns out
to be equal to the current (secant) elastic energy:

(,'1 = %G[jC[jklO-le = —ij, —Qy = Uu. (303'7 b)

In order to achieve an associated formulation, the loading function is written in terms of the conjugate
force —% = u and the damage state L (equivalent to D), in the format
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F=u—r(L)=0. (31)
This is a general form of F(u,L) since, from any other expression F'(u,L) =0, one can always isolate
u=r(L) and rewrite as above (in particular, this definition includes other functions usually found in
the literature such as those written in terms of the stress- or strain-based undamaged energies
u’ = O'[jC?jklakl/E =(1-Duoriu’ = e,-jE?jklek,/2 =u/(1 — D)).
From F, the various gradients of the loading function at constant A may be obtained:

oF oF
N (=) ; Niji (T ikl (32a,b)
oF
nij; = 30 = Cijklak[ = €jj. (33)

i

Note that the three gradients .47, N and n are equal to the corresponding rules .#, M and m in the theory,
which means associativity at all levels. In general, associativity depends on the particular choice of F such
that its gradients are parallel to the damage rule. In the case of scalar damage, however, because both
damage rule and gradient of F are scalars, it is sufficient that ./~ exists and it will automatically be parallel
to ./ . Therefore, the only condition for full associativity is that F be expressed in terms of the conjugate
force, i.e. in this case, of u (a more detailed discussion on the various levels of associativity in damage
models and related considerations may be found in Carol et al. (1994)).

The hardening/softening modulus H = —0F /0. at constant stress, is also obtained from Eq. (31) as

or
H=_——u. 34
oL " (34)
Finally, with m;;, n;; and H, the expression for the tangent stiffness is obtained:
. 1 — or
Eltjdkr} = e’L Eg'kl — ﬁaijgkh H= a_L + u. (353, b)

As described, the model has only the hardening/softening function (L) (or, equivalently, »(D)) to be
defined. This function may be identified from a single stress—strain curve from experiments, for instance
from a uniaxial test. Once it has been chosen, however, all other features of the model are automatically
fixed.

If further degrees of freedom are needed in the model in order to fit additional experimental data without
abandoning the domain of isotropic degradation, the model would have to be modified. In order to focus
on the main objective of evolution laws based on the pseudo-log damage rate, this will not be pursued in
this paper. However, a simple extension along this line has already been advanced in (Carol et al., 1998) and
is developed in more detail and inserted in the general context of an ‘extended’ anisotropic degradation in
(Carol et al., 1999).

4. ‘Basic’ anisotropic damage using CDM concepts: secant relations

As explained in Section 2.4, the first step in formulating a specific damage model consists of defining the
damage variables and the dependency of the secant stiffness or compliance (16a) on those variables. In the
case of traditional “(1 — D)” isotropic damage, this was trivial as given by expression (22a.b). For an-
isotropic degradation based on second-order tensor damage variables, however, the task becomes con-
siderably more complicated. In the literature on continuum damage mechanics, additional concepts are
often introduced such as effective stress and effective strain, as well as strain equivalence, stress equivalence
and energy equivalence. With these concepts, it is possible to establish simplified physical micro-macro
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models of the degraded material, that are the basis to relate the anisotropic secant stiffness and compliance
operators to the damage variables.

4.1. Effective stress and strain, energy equivalence

Degradation may be understood as the average effect of distributed microcracks. Effective stress afjff and
effective strain ¢ are defined as stress and strain to which the material skeleton between microcracks is
subjected. In this context, the relation between effective stress and effective strain describes the constitutive
behavior of the undamaged material, which for the sake of simplicity is assumed to be linear elastic and
isotropic:

G?Jﬁ = E?jklgzgfv G?jt"f = C?jkl o-igfv (3637 b)
where E?jk, and C?jkl are given by Egs. (23a,b).

Henceforth, the damage variables must relate the effective quantities to their nominal or apparent
counterparts, which are the ones that are measured externally and satisfy equilibrium and compatibility at
structural level. In the literature, the relation between nominal and effective quantities has been established
in three ways: strain equivalence, stress equivalence and energy equivalence. In analogy to composite
mechanics, strain equivalence (Lemaitre and Chaboche, 1990) infers that effective and nominal strains are
equal and stresses differ, while stress equivalence refers to the opposite. These assumptions may be inter-
preted microscopically in terms of parallel or serial arrangements of elements which fail during the de-
gradation process according to the Voigt and the Reuss models. In spite of strain equivalence being widely
used, this approach (and also the stress equivalence approach) exhibits the significant theoretical short-
coming of producing non-symmetric secant stiffness and compliance tensors, which introduces loss of
energy conservation in the unloading-reloading regime.

In contrast, energy equivalence automatically induces symmetry in the secant stiffness and compliance
tensors. In this approach (Cordebois and Sidoroff, 1982), the elastic energy stored in terms of effective
quantities with undamaged stiffness and in terms of nominal quantities with secant stiffness must be the
same (this definition actually requires the undamaged behavior to be linear elastic; a more general deri-
vation without that requirement, which is based on the principle of virtual work, may be found in Carol
and Bazant (1997)).

In the energy equivalence approach, neither effective strain nor effective stress coincide with their
nominal counterparts. Rather, assuming that the nominal-effective relations are linear, they must be given
by the same fourth-order “damage-effect” tensor o;;; in the following form:

= eff eff
Oij = QijkiOp; » €j

= Oyiij€xl, (37a,b)

which can be also written in inverted form as:

eff _ eff
O = %ijki Okl €ij = Okij€s 5 (38a,b)

where ;;; and a;; are tensors inverse to each other, with all minor (but not necessarily major) symmetries,
1e.

OlijpgOipgict = Qijpg Opgki = 13;/11 (39)
Combining Egs. (37) and (38) with Eq. (36), one recovers the secant relations (la,b), where

_ = 0 = _ 0
E’:fkl - ai/PququaleS7 Cifkl - al’qi/'cpqrso‘mkl' (4037 b)
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Hereby, major symmetry of secant stiffness and compliance is indeed guaranteed in this approach. Nota-
tionwise, symbols with overbar are used in the stiffness version of the model and symbols without in the
dual compliance-based counterpart (in agreement with the general theory, Section 2).

4.2. Isotropic damage in the CDM context

It is useful to rephrase the “(1 — D)” isotropic damage model from Section 3 within the CDM envi-
ronment just introduced. To do that, we assume

&ijkl = (}5 I,S}crznv Oijki = ¢ Ifjﬁl (4131; b)
These tensors may be written in matrix notation as
1 1
1 1
_ 7 1 1
a=¢ | ; a=¢ 1 . (42a,b)
1 1
1 1

Note that, in this matrix representation, « and a relate two six-component vectors of the same na-

. T T .
ture, ie. stresses 6 = [011,02,033,012,023,03] and ¢ = [o{F, 0, 655, 057, 055,057 | ', or strains €=
eff __ [ eff _eff _eff

€11, €22, €33, 2€12, 2623, 2€31] " and e = s, e, €57, 25T, 265, Zegflf]T, and therefore, all the terms on the right
half of the matrix actually correspond to the sum of two tensor components (e.g. the term 4,4 of the matrix
a corresponds to o2 + %1221, €tC.).

Replacing Eq. (41) into Egs. (37) and (38), the nominal-effective relations are obtained, which in this case
exhibit simple proportionality:

U,/ = (]E G?jff, G?jff = d) O-ijv Efjff = (,Zg eija Eij = d) Efjff. (43a7b7c, d)

These equations may now be substituted into Egs. (36a,b) and the result compared to Eq. (22), which leads
to the relations between the scalar quantities ¢ and ¢, and the traditional scalar damage D:

J):%:m. (44)

4.3. Second-order damage tensors

Disregarding vector-valued damage descriptions because of theoretical and practical shortcomings
(Leckie and Onat, 1981; Carol et al., 1991), a second-order symmetric tensor seems to be the simplest
option to represent anisotropic damage in a consistent manner. Similar to the stress or strain tensors, the
second-order symmetric damage tensor can also be decomposed spectrally and represented graphically in a
convenient way. All those advantages were recognized by several authors who proposed either the direct
generalization of D to a second-order symmetric damage tensor D;;, which varies between zero and 6;; as
damage progresses (Murakami and Ohno, 1980; Cordebois and Sidoroff, 1982; Murakami, 1987), or the use
of an integrity tensor (f)l-j = J;; — D;;, which has exactly the opposite variation (Betten, 1983; Valanis, 1990).
The two tensors ¢,; and D;; share principal axes and their principal values vary between 0 and 1, and are
related according to Dy =1 — ¢;).

Actually, one may think of a number of second-order tensors to characterize damage, all with the same
principal axes and simple relations between their principal values; the choice of which is mainly a matter of
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convenience. Additional to the integrity tensor qSU-, we introduce its square root w;; (which also varies from
0;; to 0) and their inverses ¢,; and w;; (which vary from §;; to oo). These tensors are all symmetric, and their
principal values satisfy the following relations:

(:{;ij = WirWj, (]3(1.) = w%i)v (458.7 b)
bi; = Wiwij, bu = W%{)a (46a,b)
. _ _ 1
by = Qi = 9, o = ¢—<_)a (47a,b)
1
wikaj = Wlkwkj = (S,'j7 W(l) = . (48a7 b)
W)

In the case of isotropic degradation, all these tensors reduce to their volumetric form:

by = 0y, Gy = POy, Wy = WOy, wi; = wdy. (49a,b,c,d)

4.4. ‘Basic’ anisotropic formulation based on product-type symmetrization

After introducing the tensor-valued damage variables, the nominal-effective relations (37) are established
so that the damage-effect tensors « and a can be identified. However, attempting a direct generalization

of the one-dimensional relation ¢ = ¢¢*" where ¢ represents an effective area reduction, one finds
0;; = Pyof, where symmetry cannot be ensured for o;; even if 6§ and ¢, are symmetric. This indicates that
some form of symmetrization should be applied. In the literature, both “sum-type’” and “product-type”
symmetrizations have been considered (Voyiadjis and Park, 1997). Additionally, each of them can be de-
veloped either in terms of stress or in terms of strain, leading to various forms of the damage-effect tensors
Ox OT o However, a careful examination shows that, with ‘product-type’ symmetrization, both versions
of the tensor-valued damage formulation (i.e. strain- and stress-based) are fully equivalent, whereas with
the ‘sum type’ they are not. For this reason, product symmetrization is the one considered in the following.
The parallel derivation with sum-type symmetrization is enclosed as Appendix B.

Product-type symmetrization of effective stresses was originally proposed (Cordebois and Sidoroff, 1982)
as

— ff —
gjj = W,‘kaz] Wij. (50)
This may be conveniently rewritten in terms of the damage-effect tensor a;:
= eff = _ (= = =
Oij = WijkiOpy 5 Oijki = j(wik"‘/j[ + WilW/’k)y (51a, b)

where advantage has been taken of the symmetry of 6% to obtain an & with all minor (and major) sym-
metries. Note that, due to the energy equivalence approach and related expressions (37b), this assumption
also implies

eff

61-]- = I/_V,‘kEklwlj. (52)
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Matrix representation of the tensor &;;; in the principal axes of damage (i.e. the principal axes of Dy, ¢,;,
etc.) exhibits the following diagonal form, which has been used repeatedly in the literature on anisotropic
damage (Shen et al., 1989; Chow and Wang, 1987b; Hansen and Schreyer, 1992):

(73(1)

Rl
Il
&
S
B

—
()
8]
S—

1/ d_)(z) 4_7(3)

A/ (5(3)4_)(1) |

Note that the term affecting the shear—stress component i, j is a product-type average of ¢, and ¢ ; instead of
the sum-type average obtained using the ‘sum-type’ approach (Appendix B, Eq. (B.3)). To illustrate the
difference, consider for instance the case in which damage is fully mobilized in principal direction 1, whereas
it is zero in principal direction 2. In the summation approach, the damage effect coeflicient a5 + %122
would be 0.5 (i.e. the shear ‘effective area’ would still be half of the original), whereas in the product ap-
proach it is zero, i.e. no shear stress-carrying area remains.

Now, replacing Eq. (51b) in Eq. (40a) and taking advantage of the minor symmetries of E’, one obtains

. 0. 1o, 1 O
El: jkl — WiPW/‘IWkrW[Squrs' (54)

Further, replacing the initial elastic stiffness (23a), and making the appropriate products and substitutions,
one obtains

Eijkl = Aoﬁgij(ild + G’ <q{;ik(£jl + (f;il‘f;jk)y (55)

which can be rewritten in terms of any other pair of elastic constants, obtaining in each case expressions
analogous to the initial isotropic stiffness tensor, in which all Kronecker deltas ;; have been replaced with
J)ij. Note that this expression for E;;; actually corresponds to the model initially proposed by Valanis
(1990), although that derivation was made starting from a specific form of the elastic potential, without
resorting to the concepts of effective stress, effective strain or energy equivalence.

In the principal axes of damage, the secant stiffness and compliance tensors may be written as 6 x 6
matrices:

q;(zn(/lo +2G°) d_>(1)¢_><2)/10 (13(1)(1_’(3)/10
(13(2)?3(1)/10 03(22)(/\0 +26°) (’3(2)?3(3)/10
pPoA" Py (A" +267)

=
=~
(=]
<
<~

b1 9 G
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1 -0 -0 ]
PHE b P@E  Pu)de)E
-0 1 -0
b)) E° PE  byde)E
0 0 1
C— dPHE"  doyd3)E” @23)‘90 (57)
2(1+°) ’
¢y E
2(149)
b)) E
2(1+9)
| P dHE |

Note that, in order to obtain work conjugates, vector representation of strains includes the usual factor 2 in
the shear components, while stresses do not. For this reason, matrix representation of stiffness and com-
pliance does not follow the same rules as that of damage-effect tensors used in a previous section. For E,
terms on the right half of the matrix are equal to one half of the sum of the corresponding tensor com-
ponents (i.e. the term 4,4 of E is equal to (Ejp12 + E1221)/2 = E1212 due to minor symmetries); while for C,
terms on the lower half of the matrix are equal to twice the sum of the corresponding tensor components
(i.e. term 4.4 of the matrix is equal to 2(Ciz12 + Cii) = 4Cia12).

Compliance matrix (57) may be compared to the traditional compliance matrix of orthotropic
elasticity:

r 1 12 V13 T
E; E, E
= 1 —V23
Ey E, E3
)| —V3 1
th E E E
COr — 1 2 3 | , (58)
Gz
1
Go3
1
L Gy

which results in the following equivalences:

E, = J’?UEOv E, = (f;(zz)EOa E;y = (1353)E07

v :&vo 7@‘,0 21*&‘)0
qu) 9?(1) ﬁlf(z)
_ %0 _ %) _ %0 (59a-1)
Vs ==V, V==V, Vap=—V,
¢(2) ‘f’(%) ¢(3)
_ EO o EO o EO
G12 = ¢(1)¢(2) 2(1 I VO) 5 G23 = ¢(2)¢)(3)m, G31 = ¢(3>¢(1)m

The dual formulation of the product-type, in terms of strain/compliance, with its dual damage-effect
tensor oy, secant compliance Cj;; and their matrix representations, yields

_ eff off _
€ij = Wik€xy Wijs O;j = WixOuwij, (60a, b)

_ off _1
€ij = QLijki€py 5 L = 3 (WaWji + WiWi), (6la,b)
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b _
b
)
o= 62
PP (62)
VP2 90
L P3P
Cl:/'kl = Wipwmwk"wlb‘c[?qrﬁ (63)
1 + 0
Cijk/ ¢U¢k1 ((rbzkd)jl + ¢Il¢jk) (64)
2 Y )0 .

donm  PudoTm  Pude T

0 2 0

bobnT  Pom  Pote T

0 0 P
det0w  PeteT  Pam
c- y (65)
+v')
d1yPe) =
PP 2 IEO‘
0
L b3y br)

A comparison of this matrix with the compliance matrix for orthotropic elasticity (58) yields the same
twelve equivalences for the elastic coefficients (59), provided the tensors ¢,; and qS are inverse to each other.
Therefore, we verify that both stress and strain formulations based on the product symmetrization of ef-
fective quantities are fully equivalent, i.e. « and C are the inverses of & and E.

The same comparison also gives information about the type of anisotropy that is obtained with this
approach. The expressions obtained for secant stiffness and compliance contain five independent para-
meters (E°, v° plus three principal values of damage), while general orthotropic elasticity has nine. This
means that the ‘basic’ anisotropic damage formulation represents only a relatively restricted form of an-
isotropy. This is one of the motivations for a more general approach developed in (Carol et al., 1999).

5. Pseudo-logarithmic damage rate and conjugate forces

After the second-order tensor damage variables have been selected, and the dependency of Cy; (or Ejj)
on those variables established, the next step is to identify the corresponding terms of the general theory
described in Section 2. As the general theory was presented in terms of stress and compliance, derivations in
this section will also follow the same approach. Among the various tensors defined, the inverse integrity
tensor is selected as the primary damage variable .. The choice of Cjy; and ¢, are only for convenience.
Other possibilities would produce dual developments and, with the appropriate substitutions and con-
versions, final equations should be fully equivalent.

As the first step, Cyi; given in Eq. (64) is differentiated:

0Ciju

Eyr = G
ikl a(,{)pq

q.bpq’ (66a)
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GC,W —VO 1+ VO
3, =550 [(03p0jg + 0ig0)p) brs + By (dip01g + Oig1p)| + AE [(0ipOkg + 0ig0ip) P11
+ ¢ik(5jp51q + 5]!15/17) + (51'1751(1 + 5145117)9’5,‘1( + ¢i1(5jp5kq + 5/'!151{17)] (66b)
Replacing C,-jkl into Eq. (13c), one obtains the expression of the dissipation rate from which the conjugate
force _@Z)q conjugate to ¢, is identified:

i= ()

pq’

(67a)

, 1 0C; —° 14
b ijkl .
" =3y, = Ot

kad)]do’lq. (67b,C)
This force, analogous to what was obtained in earlier papers in terms of stiffness and strains (e.g. Neilsen
and Schreyer, 1992), has no clear physical meaning, which makes it difficult to propose and interpret
loading functions and damage rules (Chaboche, 1992). From Eq. (50), however, one can see that
oy = ol in Eq. (67c), which motivates the search for an expression of —%,, in terms of effective
quantities exclusively. This is possible and conveniently achieved by changing the damage variable involved
in the dissipation Eq. (67a), from the rate of ¢,, to the rate of a pseudo-logarithmic damage tensor Ly
defined as

L= 2w,p¢'>pqwqj or dqu = bw, Lwy,. (68a,b)
If the principal axes of damage remain constant, the new tensor coincides with the logarithm of the square
inverse integrity tensor, i.e. L = In ¢? (logarithm of a tensor defined as a tensor function, i.e. with same
principal axes and logarithm of the principal values). In the case that the principal axes rotate, L defined by
Eq. (68a) cannot be guaranteed to be an exact differential, and therefore a general explicit relation between
the two tensors is not available. Nevertheless, convenient relations may be established between some of
their components and invariants, as developed in Appendix A and used later in the article.

The lack of a general explicit relation between L;; and ¢,; does not actually represent a practical difficulty
because the pseudo-log damage is only used in rate form due to its properties of exhibiting a convenient
conjugate force. Once the damage rule in terms of Z,-,- is established, the rate ¢, can be always evaluated
with Eq. (68b) and the integration process needed in the numerical implementation of the model can be
always carried out directly in terms of ¢,;, which is the variable that enters directly the expressions of secant
compliance or stiffness.

With the new pseudo-log damage rate, Eqgs. (66a) and (66b) become:

ij>

. ACu .
Cijkl = aT]lersv (693)
aC,- ikl —VO 1 + VO
aLl; = 150 [(Wirsz + Wistr)Qbk/ + d)ij(wkrwls + Wkswlr)] + RE0 [(Wirwks + Wiswkr)¢j
+ uWirwis + wiswi) + (Wirwis + wiswi )y + by (Wjrwis + wiswie )| (69b)

Introducing C into Eq. (13), the dissipation rate is obtained and the new thermodynamic force —%,,
conjugate to L, is identified:
0 0
: ; —v iy ot LEV o o
d=(~Yu)ln, V=555 (o5 )0 + S50 O O
As linear isotropic elasticity has been assumed as the relation between aj?jff
(23), it is not difficult to verify that this force may be simply rewritten as

(70a,b)

and €I, i.e. Eq. (36) with Eq.
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_ 4 __ 1 _eff eff
g"»‘ - 20rk ks (71)

Due to the coaxiality of o5’ and €', this conjugate force is another symmetric second-order tensor with the

same principal axes, and principal values equal to
p ff off -
71?([) = %U?i) 6?1.), i=1,3. (72)

The conjugate force tensor (71) exhibits the convenient property that its first invariant is equal to the
current value of elastic energy

gy — 1 eff eff _
~ W, =500 € = U, (73)

and its volumetric and deviatoric components can be simply expressed as

_ u p I rer
—¥ = 3 —P = Ear,ffek? - §5m- (74a,b)
The dissipation rate (70) can be rewritten as the sum of volumetric and deviatoric contributions:
v TV 1 eff eff u5 7D
d=ulL + Eark € T g rs Lrs‘ (75)

This expression may now be compared to the dissipation rate (30) of the isotropic formulation of Section 3.
The logarithmic damage rate and conjugate force of that section, both scalar, may be immediately identified
with the volumetric components here. This confirms that the basic isotropic formulation is recovered as a
particular case when the quasi-log rate of damage stays purely volumetric, i.e. when the damage increments
remain isotropic.

6. Loading function and pseudo-log damage rule
It seems natural to define the loading function F in terms of the conjugate forces —%;; and of the
previous history. Here, we consider the following type of expression:
F = f(—%) — r(history) = 0. (76)

The gradients of the loading function in the damage, compliance and stress spaces may be calculated using
Eqgs. (19b) and (15b) with &, = L;;:

of oC;; oC;;
JVV: = 6(772;)7 ]vijkl = Tj‘kiﬂ/‘ma nij = aL]kl '/Vrsakla (77a7b7c)

where —%,, is given by Eq. (71) and 0C;y, /0L, by Eq. (69b). If the model is associated, .#,, = A,
M.y = Nyjw and m;; = n;;. Otherwise, .#,, has to be specified independently, and M, and m;; follow from
expressions analogous to Egs. (77b,c), i.e.

Og 0Ciu
o(—%,)’ L,

Applying the chain rule to the derivatives of F, Eq. (76), one also obtains the hardening/softening pa-
rameter

M s = %rsa m;; = : M 150y (783,]3,0)

_OF| o O(—% )
Hf—aa—a—;h—/t/‘quﬁ O—%m‘ (79)

From this, we may also obtain # = H +n: E: m or, using the dual strain-based derivation (Carol et al.,
1994), the more convenient form,
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_ oF or o(—%,,)
A=-"| =2y, S 7m| gy
il " mer, // r (80)

To formulate the resistance function r, previous history is naturally represented by the current damage
state. Thus, we can usually also replace dr/0/ = (0r/0L,s).#,,. With n, m and H obtained from f, g and r,
plastic multiplier and tangential stiffness follow automatically using Eqgs. (7) and (8), and the formulation is
completed. Partial derivatives 0(—%,,)/0L,, at both constant nominal stress and at constant nominal strain
turn out to be lengthy expressions, and are developed in Appendix C.

A simple choice for f'is in terms of the invariants of —%;;. This actually does not contradict the an-
isotropic nature of the model because in the —%; space, only effective stress and effective strain are in-
volved; if these are replaced using Egs. (52) and (60b), the damage tensor comes into the picture resulting in
an anisotropic loading function in terms of nominal stress or strain. Thus, it makes sense to consider the
space of principal values of the conjugate force —% ), =%, —% ). In that space, one may represent
concepts such as p-axis, deviatoric planes, loading surface F = 0 and damage rule, analogous to what is
customary in the principal stress space in the context of plasticity theory (Fig. 3).

The choice of a pseudo-log damage rate and the space defined by its conjugate force brings about a
number of interesting advantages. As shown in Appendix A, it turns out that the volumetric part of the
pseudo-log flow rule, represented in the —%/), —%,), —% 3, space by its component parallel to the p-axis,
causes only increments of isotropic degradation. On the other hand, the deviatoric part of the pseudo-log
damage rule (i.e. its component on the deviatoric plane) causes only increments of anisotropic degradation.
In this way, we have a very simple and understandable separation of effects that may be very useful for the
development of specific models (Fig. 3). For instance, it is trivial to verify that the traditional “(1 — D)”
associated scalar damage model is recovered with a loading surface parallel to the m-plane.

1
Y=g offiet

p-axis
1
Vs 5 agff 6g:ff
-plane
1 eff eff
- l’2 = 5 Og €5

Fig. 3. Space of principal conjugate forces and volumetric/deviatoric (isotropic/anisotropic) decomposition of the damage rule in
pseudo-log space.
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The condition that the dissipation (70a) must be always positive, leads to the conditions that the loading
surface must be convex in the —%; space and must include its origin, analogous to similar arguments
classical in elasto-plasticity (Hill, 1950; Malvern, 1969). Additional constraints to the pseudo-log damage
rule may be derived from its own definition as the rate of a damage measure. The inverse integrity ¢ has
been defined as a tensor which evolves between d;; and oo as damage progresses. If s; denotes the cartesian
components of a generic unit vector (sis; = 1), the projection s;¢,;;s; may be interpreted as a geometric
measure of the damage on a plane with normal oriented with that direction (i.e. inverse of a stress-carrying
area fraction). Due to the irreversible nature of damage (no healing is considered in this study), it seems
reasonable to assume that the damage on any given plane should always increase or remain constant, but
never decrease. This means that, for any orientation s, we must have

s,-gbl-jsj 20 (81)

This implies that the damage rate tensor (j)l:/. be positive semi-definite, i.e. that all its eigenvalues be positive
or zero. By replacing Eq. (68b) in the previous equation, one obtains

K
. A
/ r_ ’ ’ /o
ESpLP‘ISq = Esp/%pqsp =20, s,=wys (82)
in which the square root integrity tensor w,, is in general non-singular and therefore s;? is also any arbi-

trary orientation. Since the inelastic multiplier 4 must be non-negative, this means that the pseudo-log
damage rule .#,, must also be positive semi-definite, i.e. that its principal values must satisfy .#;) = 0,
M@z =0 and 43 = 0. In terms of a geometric representation in Fig. 3, this implies that the vector rep-
resenting the damage rule should be part of the positive—positive—positive octant, which is a severe re-
striction if compared with traditional flow rules in stress space. For instance, associated models with
surfaces similar to von Mises or Drucker—Prager (in which the normal may have negative component on
one of the axes) are not allowed here. On the other hand, a surface similar to Rankine in the —% ), =%,
—% (3 space would sit in the limit of the stated restriction, with only one positive principal value of .#;; at a
time, while the other two are zero. This model, that we will call ‘pseudo-Rankine’, actually exhibits very
appealing properties and is developed in detail and illustrated with some application examples in a com-
panion article.

7. Concluding remarks

(1) The theoretical framework for elastic degradation and damage proposed previously by the authors
proves to be a powerful and robust tool for developing consistent material formulations in an orderly and
systematic manner.

(2) A basic formulation of anisotropic damage based on a second-order damage tensor, energy equiv-
alence and product-type symmetrization, is developed within that framework, and agrees with secant fo-
mulations widely used in the literature. With the usual damage tensors, however, the corresponding
conjugate forces are complicated and physically meaningless, which makes it difficult to establish evolution
laws.

(3) This problem is overcome by introducing the pseudo-logarithmic rate of damage. This new proposal
brings attractive properties to the new damage variable and its corresponding conjugate force, which be-
comes a simple product of effective stresses and effective strains.

(4) Perhaps the most salient of these properties is the separation of isotropic and anisotropic effects that
is induced in pseudo-log space; the volumetric part of the damage rule only generates increments of iso-
tropic damage, while its deviatoric part only generates anisotropic degradation. This separation makes it
more physical and intuitive to formulate evolution laws with specific features. The classical isotropic scalar
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damage model becomes the simplest first-invariant loading surface represented by cut-off w-planes in the
conjugate force space.

(5) A specific implementation of these principles in a ‘generalized pseudo-Rankine model’ formulation,
together with some examples of verification, are included in a companion Part II article.
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Appendix A. Pseudo-logarithmic rate of a symmetric second-order tensor

If ¢ is a second-order symmetric tensor with cartesian components ¢,;, we define its pseudo-logarithmic

rate L;; as

ij2

with the notation ¢ = ¢ ' and W equal to the square root tensor of ¢, so that w,,,, = @,,.
The original tensor ¢, its inverse and their square roots may be decomposed in product form

¢ij = ¢‘//ijv qgij = qglpijy Wij = WUy, Wiy = Wiy, (A.2a,b,c,d)
where
b= (det ) f=(detd) =2 w=(detw)’ = /5§, w=(detw)” =, (A3)
¢ Vo
1 . 1 - 1 i 1 _
ij = g(t)ij? ij = 5(15(/7 Vij = ;Wija Vij = %Wij (Ada,b,c,d)

in which ¥, ¥, v and v are all isochoric tensors (namely tensors with unit determinant). These tensors also
satisfy ¥ = v> and ¥ = v?. Using decomposition (A.2a), the rate of ¢;; can be expressed as

q.sij = QS‘//U + d)l/)ij' (A-S)

If this equation and Eq. (A.2d) are substituted in the pseudo-log rate (A.1), one obtains the additive de-
composition:

SN

Lij = Léij + ﬂija L =2 ; :uij = ZEiPlppqﬁlIﬁ (A‘6)

where the first component, L'5,-j, is purely volumetric, and the second, fi;;, is purely deviatoric. The latter can
be verified by calculating the trace of f;:

ﬂii = 21—)iplp.pq5qi = 2lppql/}pq' (A7)

The tensors tﬁpq and lﬁpq can be expressed in terms of the principal values ¥, and directions n,@ of y:
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3 3 3
1 , : . .
[Z v . 2”1 [Z damn) + > (i n) + ”;(a””él))] : (A-8)
k=1 =1 =1

Taking into account that n{n) = 65, and Al =0, the previous expression can be developed and
simplified, and the result multiplied by the unit determinant ¥, (5 = 1, yielding

Vo Vo Yo : : ~
iy = 2| 2 2B ZE 2 s+ Vi + abaie) =0 (A9)
Vo Yo Yo
The last expression is equal to zero because is equal to the differentiation of the same unit determinant
YaWobe =1

The volumetrlc part of the pseudo-log tensor, L = L;;/3, may be explicitly integrated in terms of
¢ = (det ¢)'/ 3. Directly from (A.6b), one obtains

=In(¢%), ¢=e"~ (A.10a,b)

Appendix B. Secant stiffness/compliance based on sum-type symmetrization of effective stresses

The fundamental assumption of the sum-type symmetrization may be expressed as (Lemaitre and
Chaboche, 1990; Murakami, 1988)

0ij = ;(‘ibzko';jf + O-?lffd_)kj)ﬂ (B.1)
where J)U is the integrity tensor. This may be rewritten in terms of the damage—effect tensor a:

Gy = A0y Lijkt = %(J)ikéﬂ + Gudi + Oupy + 5iz<l_>,-k)7 (B.2a,b)
where advantage has been taken of the symmetry of ¢l to obtain an oc,,u with all minor and major

symmetries. The 6 x 6 matrix representation of o, in the reference system given by the principal directions
of damage is diagonal:

by

Rl
I
+
S
=
—
=
w
=

&(3)'“5(1)

L 2
Now substituting Eq. (B.2b) into Eq. (40a) and taking advantage of the symmetry of Kronecker delta J;;
and integrity tensor ¢,;, one obtains the secant stiffness in terms of the integrity tensor:

A G 1 T B
Bus = 40,00+ 5 (Gudu + ubs + 308udn 30,005 4 300,00+ 5008,00 ). (B

If compared to its counterpart in the product-type symmetrization (55), this expression differs in the shear
terms. The differences may be seen better on the matrix representation of E;y; in the principal axes of
damage:
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Oy (A" +26°)  hydpA° Db A"
?(z)qf(l)/lz By (4° + Zg?") 72(;5(2)?(3)/10
bdmA b3 P4 b5 (A" +26°)
E = (43(1);@(2)) GO ’
bo)+i
( o <>) G0
_ -2
b3+
( o (1)) G0
(B.5)

which is the counterpart of Eq. (56). This stiffness matrix may be inverted with A° and G° being replaced by
E° and V° to obtain the counterpart of Eq. (57)

1 )0 )0 .
PHE S E )b E
- _ 1 —
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—° —° 1
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2
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2
2 2(14v%)
< boy+da) > £

2
_ 2 2(1+9)
i d3)+oq) E9 ]
(B.6)

This compliance matrix may be compared to the traditional compliance matrix for orthotropic elasticity
(58), which results in the following equivalences:

El - qg%])Eov E2 - (i;(zz)EOa E3 - (]3(23)E03

Vi2 = ﬁ\’o, Vi3 = ﬁv()’ Var = —LVO7
(1) (1) ¢(3)
bis bu) bo) o
Vo ==—V, Vi =—=—V, V==V,
dp) b dp)
- - 2 0 s - 2 0
G — [ Lot E G [P0t %0 E
2 2 2(0+v)" 72 2 2(1+19)"
_ _ 2
b + by E°
Gy = ‘ . B.7
31 < ) 200+ W) (B.7)

Comparing these equations to their counterparts in the product-type symmetrization (59), Young’s moduli
and Poisson’s ratios are the same, but the shear moduli differ: here the original values G° have been reduced
by the squares of the sum averages (¢, + ¢,;))/2, while there G° was affected by the product ¢, @ ; (i.e. by
the square of the product averages of the two quantities).
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The sum-type formulation can also be derived in a dual way, i.e. in terms of strain and compliance
instead of stress and stiffness. This leads to the following expressions for the dual damage-effect tensor o,
and compliance Cjj;:

&5 = H(@ucsT + Ty ) (B.8)
€ij = O‘i.iklﬁzifv %ijkl = Alt(d)ikéﬂ + ¢yl + 5ik¢j1 + di jk)7 (B.9)

1 + 0
Cot = o b+ <%%+¢MH-@m@ﬁ-¢M@H-M%@ﬁ>%%@Q
(B.10)

If the reference system coincides with the principal axes of damage, these fourth-order tensors exhibit the
following 6 x 6 matrix representation:

@ = Py toe ) (B.11)
2

C= ( P+ )2 2(1+9)
2
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L 2 E0

(B.12)

Identification of the various components with the traditional orthotropic elastic compliance (58) yields

1 0 1 0 1 0

E]ZTE, EZZTE, E}ZTE,
Py D) D)

vy = W0 P Pe) 0

12 — v ) - v ) - v )
b b b

vy = 000 P60 P 0
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b3 b dp
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2 2
2 E° 2 E°
G12 = 0’ G23 = 0\’
day+ op ) 2(14+17) o)t éz ) 2(1+1)

2
2 E°
G = ((b(s o ) AT+ (B13)

With the assumption that the tensors qﬁ and ¢,; are inverse to each other (i.e. that qS o = 1/, i=1-3), the
previous expressions are not equlvalent to thelr stress-based counterparts (B.3), (B.6) and (B.7). Although
Young’s moduli and Poisson’s ratios coincide in both versions of the theory, the three shear moduli do not,
and neither do the shear-related terms of the damage—effect tensors (i.e. the inverse of ¢ ;) + ¢, is not equal
to 1/¢u)+1/90)

Therefore, it can be concluded that the sum-type symmetrization in terms of stress/stiffness and its dual
in terms of stress/compliance are not equivalent, and they actually represent alternative incompatible ap-
proaches.

Appendix C. Partial derivatives 0(—%/,,)/0L,, at constant nominal stress or constant nominal strain

Considering first the derivative at constant nominal stress, using the chain rule we can decompose the
desired derivative in the following product of two terms:

o(=%y)
OLys

aWyab
oL,

o(=%y)
a B awab

(C.1)

a

To obtain the first term of the product, we start from the conjugate force (71) and replace effective strain in
terms of effective stress using the elastic isotropic law (36b) with (23b), and effective stress in terms of
nominal stress (60b). This yields

—vo 140

Wik O WipWpg O gr Wy (C.2)

Now, we can make the derivative with respect to the symmetric tensor w,;, at constant nominal stress. By
doing so, and after some rearrangements and substitution of nominal stress back in terms of effective stress
(50), we obtain

a _@i' _VO
—(aw bj) = 250 {2 (O'Zngb + waka,if,f) Geff + (o) ((5aiwbk + 5mwak)0;i§f + (OajWik + 5bjwak)0'iff>]
a 4
1+ - -
+ TR |:(5aiwbk + 5biwak)( eff) + O',ekff (Wkaazt + kaaeﬁ)
+ (5ajwbk + (5ij’vak)( ) + Geff (Wkaahz + W O'eff)} (C3)

The derivative in the second term on the right-hand side of Eq.(C.1) is actually the same at constant
stress or strain, because w,, is the square root of the integrity tensor ¢, and the rate of this is directly
related to the pseudo-log rate of damage L, by (68), without any other variable involved. To calculate this
factor, we decompose again this derivative into two using the chain rule:

awab o aWab ad)cd
oL, Q¢4 OL, "

(C.4)
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The second factor here is the easiest since, directly from the definition of pseudo-log rate (68) and taking
into account the symmetry of L,,, one has

0 d) cd
oL rs

= };(Wcrwds + stwcr)~ (CS)

The first factor in Eq. (C.4) is a little trickier. It represents the derivative of the symmetric second-order
tensor w with respect to its second power ¢ = w>. What can be easily obtained is its inverse, by differen-
tiating the square relation ¢.; = WeaWaa:

; . . 0.y .

¢cd = WetWaa + WeaWaa = %ﬁwaby (C6a)

0 1 .

a‘(f;d = i (Wmédh + Wch(sda + Wda(scb + Wdham)a (C6b)
ab

where advantage has been taken of the symmetry of w. In the principal axes of damage, this fourth-order
tensor has a simple 6 x 6 diagonal matrix representation that can be immediately inverted to obtain the
desired derivative in the same axes:

2W(1)
2W(2)
¢ _ 2w (C.7a)
ow wa) +ww) ’
W) + W)
L wE) + W
-1 .
2wm
1
2w(y) ]
ow 2w
e _ ® 1 . (C.7b)
W<1)+W(2> .
w(2)tw(s)
1
L W(3)+w(l) i

However, in order to be introduced in previous equations, we need a tensorial expression of this derivative
which is not as simple as the matrix form would suggest. Hoger and Carlson (1984) give the general ten-
sorial form, which turns out to be a sum of 18 different products of ¢,;, w;; and J;;, each of them multiplied
by a scalar factor function of the principal values w;, w, and ws. To our purposes, the alternative formulas
given in of (Ogden, 1984, pp. 162-163) for the derivative of a tensor function of a tensor in terms of its
spectral decomposition, seem more advantageous. If the unit vectors sf”, I=1,2,3 denote the principal
directions of damage, i.e.

3 3

1) (I I) (I

wi = woy s by = by sV, (C.8a,b)
1=1 =1

where implicit summation does not apply to indices between parentheses, Ogden’s equations applied to our
case give
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wey, 1o~ 1 1 1
a1 ommm 1 %) <J>( D) L W) <1>)
= E s.0sp sy sy + E splsp sy sy ssy ). C.9
0y 245wy “ b ] 52 W) T W) a b d d (C9)

Note that for this particular tensor function (w = ¢'/%), it turns out that the terms of the first summatory

are equal to the terms that would be obtained, if / = J in the second summatory. This allows one to merge
both in the simpler form:

w1 1
b= 7 Z . (sé”séj) + s(gj)sﬁf)) (sg)s;]) + sgj)sff)) (C.10)

in which major symmetry has also been introduced, motivated by the major symmetry observed for the
inverse tensor (C.6b). The verification that, in this symmetrized form, tensors (C.10) and (C.6b) are inverse
to each other is immediate by making the product and taking into account that ZLI sﬁ”sﬁ-” = J;;. Also, by
reducing the unit vectors sﬁ” to their canonical form it is possible to verify that the matrix form (C.7) is
recovered.

Egs. (C.9) and (C.5) may now be introduced into (C.4). Taking advantage that s{'w., = ws\”), this leads
to

owg, 1 ER wwy) (
ab _ 1 oWy (V) L (W) (1)> D) L )
= E E 8,08, + S80S 8087 + 8008
aLrs 8 =1 w() +W(J) b b ( : ! )
3

;_ (sms,(f) + sé”sé”) (s + sV)s1), (C.11)
= A

This and Eq. (C.3) may be finally introduced into Eq. (C.1) to obtain the original partial derivative at
constant nominal stress.
The partial derivative at constant strain may be obtained following a dual derivation:

@(—@i,-) a(_@z/) awab
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OL, OWgp . OL,, ' ( )
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