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Abstract

In spite of its appeal, anisotropic damage is being introduced in the constitutive equations of engineering materials at

a slow pace. One of the main reasons is the di�culty of establishing general evolution laws. This originates from the

lack of physical meaning of the thermodynamic forces conjugate to the damage variables, which ®nally constitute the

space in which loading functions and `damage rules' are de®ned. In this article, the authors propose a new `pseudo-

logarithmic' rate of damage, which has the advantage of exhibiting a simple and meaningful conjugate force with very

convenient properties. A main advantage is the physical interpretation of the corresponding ``damage rule'', which

clearly separates the e�ects of its volumetric part, responsible for isotropic degradation, from its deviatoric part, re-

sponsible for anisotropic e�ects. This new concept is applied to a second-order tensor secant formulation, which is

developed using traditional concepts of continuum damage mechanics within the general theoretical framework of

elastic degradation and damage recently proposed by the authors. A ®rst example of anisotropic damage formulation

based on these concepts, the `generalized pseudo-Rankine' model, is presented and veri®ed with analytical and nu-

merical examples in a companion `Part II' paper. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Since the introduction of the damage concept (Kachanov, 1958), models involving elastic degradation
and damage have become progressively more popular and are nowadays often used for the constitutive
description of quasi-brittle materials, such as concrete, rocks, ceramics, etc. (Dougill, 1976; Hueckel and
Maier, 1977; Maier and Hueckel, 1979; Dragon and Mr�oz, 1979; Cordebois and Sidoro�, 1982; Ladev�eze,
1983; Mazars and Lemaitre, 1984; Han and Chen, 1986; Ortiz, 1985; Sim�o and Ju, 1987; Chow and Wang,
1987a; Yazdani and Schreyer, 1988; Ju, 1989; Mazars and Pijaudier-Cabot, 1989; Chaboche, 1990; La
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Borderie et al., 1990; Chaboche, 1993; Lubarda et al., 1994; Carol and Willam, 1996). For a realistic
description of the material behavior, many of these models incorporate additional features, such as di�erent
behavior in tension and compression, sti�ness recovery due to microcrack closure, combination of de-
gradation and plasticity, etc. From the theoretical viewpoint, however, all these features are not central to
the `core' description of elastic degradation and damage itself, which is the subject of the present study.

A detailed examination of the existing formulations of elastic degradation shows the need for further
theoretical developments. On the one hand, terminology and notation are quite di�erent from one author
to another, making comparison time-consuming and often unclear. On the other hand, once the di�erent
formulations have been compared, it becomes apparent that signi®cant theoretical gaps still exist, especially
when anisotropic degradation is considered. In the recent past, these considerations motivated the authors
to propose a uni®ed theoretical framework for elastic degradation and damage (Carol et al., 1994). This
proposal was based on well-known concepts and notations used traditionally in engineering elasto-plas-
ticity, and led to very similar expressions for tangential sti�ness and other ingredients of the constitutive
theory. The bene®ts are signi®cant: standardization provides a common language that is fundamental to
real progress in any ®eld; having similar expressions it is possible to take advantage of theoretical devel-
opments in elasto-plasticity, such as for instance closed-form solutions of strain localization analysis (Rizzi
et al., 1995, 1996; Carol and Willam, 1997); moreover, combining damage and plasticity becomes equiv-
alent to the formulation of multi-surface plasticity.

The theoretical framework of Carol et al. (1994) was developed in all generality with regard to the
number and nature of the damage variables, and is brie¯y summarized in Section 2. In that publication, the
authors have speci®ed the general theory for the simplest type of elastic degradation: the ``(1ÿ D)'' scalar
damage formulation. In the present article, the possibilities of that constitutive framework are developed
further by focusing on the next level of complexity, i.e. anisotropic elastic degradation of initially isotropic
materials, based on second-order damage tensors. Within this topic, new e�orts are directed towards three
objectives: ®rst to establish a `basic' secant anisotropic formulation, which emerges naturally from the
general theory; second (and the most important), to provide a simple and e�ective way to de®ne appro-
priate and consistent evolution laws; and third, to implement a simple model based on these unifying
concepts and present some numerical results.

The `basic' secant formulation encompasses the simplest forms of isotropic and anisotropic damage
descriptions that emerge most often in the existing literature, and at the same time appear to be theoretically
consistent and compatible to each other (i.e., the isotropic is a particular case of the anisotropic formu-
lation). Most scalar damage models in the literature (Leckie, 1978; Lemaitre and Chaboche, 1978; Mazars
and Lemaitre, 1984; Resende, 1987; Sim�o and Ju, 1987; Ju, 1989; Franziskonis and Desai, 1987; Neilsen and
Schreyer, 1992) are of the traditional ``�1ÿ D�'' type, which in this article is called `basic' isotropic
formulation and is described in Section 3. For anisotropic degradation, a number of models have been
proposed, using damage vectors initially (Davidson and Stevens, 1973; Krajcinovic and Fonseka, 1981;
Suaris and Shah, 1984; Costin, 1985), most often second-order tensors (Vakulenko and Kachanov, 1971;
Dragon and Mr�oz, 1979; Kachanov, 1980; Murakami and Ohno, 1980; Betten, 1983; Oda, 1983; Chow and
Wang, 1987b; Murakami, 1987; Suaris, 1987; Shen et al., 1989; Valanis, 1990; Hansen and Schreyer, 1992;
Swoboda and Ito, 1993; Voyiadjis and Park, 1997), and even fourth- or eighth-order tensors (Chaboche,
1978, 1981; Lemaitre and Chaboche, 1990; Ortiz, 1985; Sim�o and Ju, 1987; Yazdani and Schreyer, 1988;
Lubarda and Krajcinovic, 1993). The simplest representation of anisotropic degradation, which seems to be
common to many proposals, and which satis®es at the same time basic consistency requirements, is based on
the second-order damage tensor Dij (direct generalization of the scalar D), or alternatively on the equivalent
integrity tensor �/ij � dij ÿ Dij (Valanis, 1990), where dij is the Kronecker delta. Although it has not been
described in general in this way, the `basic' anisotropic formulation presented in Section 4 is derived using
traditional concepts in continuum damage mechanics, such as e�ective stress, e�ective strain and energy
equivalence, with resulting secant relations that are equivalent to those found in the literature.
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It is not di�cult to verify that the `basic' formulation of Sections 3 and 4 represent a restricted form of
damage in the isotropic and anisotropic ranges, which does not include some relatively simple forms
of elastic degradation such as the `von Mises' type (Ju, 1990; Neilsen and Schreyer, 1992). For the sake of
clarity, however, attention in this article is focused on developing evolution laws and illustrative examples,
and this is done on the `basic' formulation. An `extended' formulation with more general forms of both
isotropic and anisotropic secant relations, which are still compatible with the general approach proposed, is
developed in a separate article (Carol et al., 1999).

What can be considered to be well established in anisotropic degradation is often limited to the secant
relations of sti�ness or compliance in terms of the damage variables. In analogy to plasticity, a closed
constitutive formulation also requires a loading function, a `damage rule' and some hardening/softening
laws. These are normally de®ned in the space of the thermodynamic `forces' conjugate to the damage
variables. With the usual second-order damage or integrity tensor, the conjugate forces turn out to be a
product of stress, strain and damage tensor components, combined with the elastic constants, which does
not exhibit a clear physical meaning (Valanis, 1990; Hansen and Schreyer, 1992). This makes it di�cult to
foresee the consequences of any speci®c choice of loading surface, damage rule, etc. As a remedy, the
authors recently proposed to consider a new pseudo-log rate of the damage tensor (Carol et al., 1998), which
exhibits great practical advantages, such as a very simple, physically meaningful conjugate force and a
number of interesting properties concerning its volumetric±deviatoric decomposition and invariants. These
new ideas are presented and are further developed in detail in Sections 5 and 6.

Finally, Section 7 includes some concluding remarks, which summarize the new theoretical develop-
ments presented. Application of these developments to the formulation of a new, speci®c, model for an-
isotropic damage and its analytical and numerical veri®cation is the topic of a companion Part II article
(Carol et al., 2000).

2. Theoretical framework for elastic degradation and damage

A general theoretical framework to formulate elastic degradation and damage at small strains was
presented by the authors in Carol et al. (1994). This framework is brie¯y summarized in this section.

2.1. `Plasticity format' of elastic degradation

The most characteristic equation of elastic degradation is the secant stress±strain relation:

rij � Eijkl�kl or �ij � Cijklrkl: �1a; b�
Eijkl and Cijkl denote the components of the elastic secant fourth-order sti�ness and compliance tensors E

and C, which are assumed constant during unloading and reloading, and must remain symmetric to avoid
spurious energy dissipation or generation under closed stress or strain paths in that range of behavior.
Sti�ness and compliance tensors are inverse to each other, i.e.,

EijpqCpqkl � CijpqEpqkl � I sym
ijkl ; I sym

ijkl � 1
2

dikdjl

ÿ � dildjk

�
: �2a; b�

Analogous to the concept of a plastic threshold condition, a loading function F is introduced to de®ne an
elastic domain in stress space F �r; p� < 0 in which sti�ness remains constant. Here, p denotes the set of
variables that de®nes the current con®guration of the elastic domain. Once the loading surface F � 0 is
reached, further degradation may take place, _Eijkl 6� 0, accompanied by increments of degrading strain _�d

ij.
The degrading strain rate is de®ned as the excess strain rate beyond the value that corresponds to the
increment of stress according to the current secant sti�ness (Fig. 1). With these de®nitions, the following set
of rate equations describes progressive elastic degradation:

I. Carol et al. / International Journal of Solids and Structures 38 (2001) 491±518 493



_rij � Eijkl� _�kl ÿ _�d
kl�; �3�

_�d
kl � _k mkl optionally mkl

�
� oQ

orkl

�
; �4a; b�

_F � nij _rij ÿ H _k � 0; nij � oF
orij k

; H

���� � ÿ oF
ok

����
r

; �5a; b; c�

where m de®nes the direction of the degrading strain rates (4a), optionally expressed in terms of the gradient
of a potential Q�r�, (4b), and _k is the inelastic multiplier analogous to the plastic multiplier in traditional
elasto-plasticity. Eq. (5a) represents the consistency condition, and H is the hardening/softening modulus.

Eqs. (3)±(5) are only valid for further loading, i.e. when F � 0, _F � 0 and _kP 0. The alternative case is
unloading, with _F < 0 and _k � 0, in which only Eqs. (3) and (4) would be valid leading to _�d

kl � 0 and
_rij � Eijkl _�kl. Assuming that we are on the loading surface F � 0, the two cases may be distinguished using
the complementarity (Kuhn±Tucker) conditions:

_F 6 0; _k P 0; _F _k � 0: �6a; b; c�
Eqs. (3)±(5) may be combined in the traditional way of plasticity, yielding the following expressions for

the degradation multiplier and the tangent sti�ness:

_k � 1
�H

ncdEcdkl _�kl; �H � H � npqEpqrsmrs; �7a; b�

_rij � Etan
ijkl _�kl; Etan

ijkl � Eijkl ÿ 1
�H

EijabmabncdEcdkl: �8a; b�

Similarly to plasticity, the de®nitions of F and m are subjected to the constraint �H > 0 (i.e. H > ÿn : E : m)
such that the denominator in Eqs. (7a) and (8b) remains strictly positive. The model is called associated in
the stress space when m is proportional to n, and consequently, the tangent sti�ness exhibits major sym-
metry. If m is derived from a potential Q, associativity may be alternatively stated as Q � F .

Fig. 1. Elastic and degrading strain increments.
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2.2. Degradation rule for compliance

Previous Eqs. (3)±(8) have the same form as classical plasticity except for the secant sti�ness instead of
the initial sti�ness, and the degrading strain instead of the plastic strain. In contrast to plasticity, however,
those equations (and the additional de®nitions inherent to H) are not su�cient to de®ne the evolution of an
elastic-degrading model, since no evolution law has been speci®ed for the (variable) secant sti�ness or
compliance. In order to do that, Eq. (1) can be di�erentiated and compared to Eq. (3). Using
_Eijkl � ÿEijpq

_CpqrsErskl (obtained from di�erentiation of Eq. (2a)), this leads to

Eijpq _�d
pq � ÿ _Eijkl�kl or _�d

pq � _Cpqrsrrs; �9a; b�
which relates the secant compliance and degrading strain rates. When the ®rst is known, the second follows
(but not the opposite). A generalized ¯ow or degradation rule for the secant compliance can be formulated
to de®ne the evolution (growth) of degrading strains

_Cijkl � _kMijkl and mij � Mijklrkl; �10a; b�
where _k speci®es the magnitude and M the direction of the rate of change of C. Eq. (10b) follows from
replacing Eqs. (4a) and (10a) into Eq. (9b). This growth equation (essentially equivalent to Eq. (2.7) in
Hueckel and Maier (1977) and to Eq. (3.36) in Ortiz (1985)) indicates that once the degradation rule has
been established, the corresponding ¯ow rule for degrading strains follows automatically. The requirement
that E and C remain symmetric restricts M to be symmetric. With the speci®cation of the degradation rule,
the elastic-degrading formulation is closed. The ®nal set of constitutive equations strictly required to in-
tegrate the material response for a prescribed strain history reduces to Eqs. (7), (10a) and (1) (and some
appropriate hardening/softening laws inherent to H). In addition, the tangential sti�ness given by Eq. (8)
with m de®ned in Eq. (10b), may be needed for the incremental±iterative procedures, or in the analysis of
strain localization properties based on the acoustic tensor (Rizzi et al., 1995, 1996; Carol and Willam,
1997).

2.3. Conjugate forces and associativity

Simple thermodynamic concepts lead to the de®nition of a fourth-order ``force'' tensor, conjugate to the
increments of compliance in a similar way as stress is the conjugate variable to strain. For a constant
temperature and disregarding e�ects other than mechanical, the energy stored per unit volume u may be
assimilated to the energy that would be recovered upon unloading, which, at any given time, may be ex-
pressed in terms of current secant sti�ness or compliance:

u � 1
2
�ijEijkl�kl � 1

2
rijCijklrkl: �11a; b�

By di�erentiation, we obtain the balance of energies exchanged in a unit volume during a time increment dt
(®rst principle):

_u � rij _�ij � 1
2
�ij

_Eijkl�kl: �12�
In this equation, it is possible to identify rij _�ij as the external work supply and _u as the increase of elastic
energy. Therefore, it is immediate to de®ne the dissipation rate as the di�erence, which must remain non-
negative (second principle):

_d � rij _�ij ÿ _u � ÿ1
2
�ij

_Eijkl�kl � 1
2
rij

_Cijklrkl P 0: �13�
The conjugate force ÿY is then identi®ed as

_d � �ÿYijkl� _Cijkl; ÿYijkl � 1
2
rijrkl: �14a; b�
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With ÿY it is possible to de®ne the gradient of F in the compliance space and relate it to the gradient in
stress space:

Nijkl � oF
o�ÿYijkl� ; nij � Nijklrkl: �15a; b�

The concept of associativity can also be introduced in the compliance space, when M and N are parallel.
Associativity in compliance space implies associativity in the stress space but not the opposite (Carol et al.,
1994).

2.4. Elastic-damage formulation

In the formulation described in Sections 2.1 and 2.2, the degradation state is characterized by the secant
compliance (or sti�ness) tensor itself, with 21 independent components. The corresponding evolution laws
must also involve 21 components (those of the tensor Mijkl). Alternatively, it is reasonable to assume a
reduced set of variables, which still fully characterize the state of degradation or damage in the material for
which simple evolution laws can be postulated. These are the damage variables, D�, the number and nature
of which (scalar, vectorial or tensorial) does not need to be speci®ed for the development of the general
theory (the subscript � represents the desired number of indices). According to that concept, one may
write

Cijkl � Cijkl�C0
pqrs;D��; _Cijkl � oCijkl

oD�
_D�; �16a; b�

where C0
ijkl is the initial compliance, Cijkl are a set of known, continuous and di�erentiable functions, and

repetition of subscript � implies summation over all the indices represented by the symbol. A damage rule
for D� may be formulated, and its relation to the evolution rule for compliance may be established as

_D� � _kM�; Mijkl � oCijkl

oD�
M�: �17a; b�

Similar to Eqs. (4a) and (10a), _k speci®es the intensity and M� the direction of the increment of the
damage variables in the damage space. The ®nal equations for the evolution of elastic damage are the same
as for the elastic degradation where Mijkl is replaced by M�.

Similar thermodynamic concepts as before lead to the conjugate force ÿY� to the damage variable _D�,
which is

ÿY� � ÿYijkl
oCijkl

oD�
�18�

and allows one to de®ne the gradient of F in the damage space and its relation to N:

N� � oF
o�ÿY�� ; Nijkl � oCijkl

oD�
N�: �19a; b�

Associativity in the damage space occurs when N� is proportional to M�, and it also implies associativity
at compliance and stress levels. Further details of this theoretical framework, as well as the dual formu-
lation in strain space and the equivalences between both versions of the theory, may be found in Carol et al.
(1994).

496 I. Carol et al. / International Journal of Solids and Structures 38 (2001) 491±518



3. `Basic' isotropic damage

Using the theoretical framework described in Section 2, it is possible to formulate a variety of damage
models. The simplest ones are those in which the initial sti�ness (and therefore also the compliance) is
isotropic, and its degraded counterpart also maintains isotropy. In particular, the traditional ``�1ÿ D�''
scalar damage model is that one in which all the components of the sti�ness tensor are reduced with the
same coe�cient �1ÿ D�, where D is a damage variable varying from 0 to 1. In Carol et al. (1994), a strain-
based formulation of this type was derived in the general framework presented, and it was shown that a
number of models available in the literature (Mazars and Lemaitre, 1984; Sim�o and Ju, 1987; Neilsen and
Schreyer, 1992) were included as particular cases. Here, the derivation is presented in stress space and with
more convenient choices of inelastic multiplier and damage variable, which makes expressions look simpler
and allows us to introduce the concept of logarithmic scalar damage, although the resulting formulation is
fully equivalent.

First, consider the general form of the isotropic sti�ness and compliance tensors:

Eijkl � Kdijdkl � G dikdjl

ÿ � dildjk

�
; Cijkl � ÿm

E
dijdkl � 1� m

2E
dikdjl

ÿ � dildjk

�
; �20a; b�

where K and G are the Lam�e constants, linked to Young's modulus E and Poisson's ratio m by the classical
relations

K � mE
�1� m��1ÿ 2m� ; G � E

2�1� m� : �21a; b�

In the ``�1ÿ D�'' scalar damage model, the following well-known expressions are assumed for the secant
sti�ness and its inverse compliance:

Eijkl � �1ÿ D�E0
ijkl; Cijkl � 1

1ÿ D
C0

ijkl; �22a; b�

where E0
ijkl and C0

ijkl are the initial sti�ness and compliance tensors given by Eq. (20a) with initial values of
elastic constants K0, G0 or E0, m0. i.e.

E0
ijkl � K0dijdkl � G0 dikdjl

ÿ � dildjk

�
; C0

ijkl �
ÿm0

E0
dijdkl � 1� m0

2E0
dikdjl

ÿ � dildjk

�
: �23a; b�

Di�erentiating Eq. (22b) yields

_Cijkl �
_D

�1ÿ D�2 C0
ijkl: �24�

A new logarithmic scalar damage variable L is de®ned:

D� � scalar � L � ln
1

1ÿ D
; D � 1ÿ eÿL; �25a; b; c�

which allows us to rewrite Eq. (22) as

Eijkl � eÿLE0
ijkl; Cijkl � eLC0

ijkl: �26a; b�
While the conventional damage variable D varies between 0 and 1, the logarithmic damage L varies be-
tween 0 and1 as represented in Fig. 2a and b. Evolution of the secant Young's modulus with L, which is
implicit in previous equations (i.e. E � eÿLE0), is represented in Fig. 2c.

Di�erentiating Eq. (26b), we can rewrite Eq. (24) as

_Cijkl � _LeLC0
ijkl � _LCijkl: �27�
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With previous de®nitions, it is possible to use _L itself as inelastic multiplier:

_k � _L �
_D

1ÿ D
: �28�

This leads to the identi®cation of the m terms of the general theory, which take the convenient simple form
of the current value of compliance and strain:

oCijkl

oD�
� oCijkl

ok
� Cijkl; M� � 1; �29a; b�

Mijkl � Cijkl; mij � Cijklrkl � �ij: �29c; d�
The dissipation equation leads to the force ÿY conjugate to the logarithmic damage L, which turns out

to be equal to the current (secant) elastic energy:

_d � 1
2
rijCijklrkl

_L � ÿY _L; ÿY � u: �30a; b�
In order to achieve an associated formulation, the loading function is written in terms of the conjugate

force ÿY � u and the damage state L (equivalent to D), in the format

Fig. 2. Logarithmic scalar damage L: (a) relation to traditional scalar damage L�D�, (b) inverse relation D�L�, and (c) relation E�L�=E0.
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F � uÿ r�L� � 0: �31�
This is a general form of F �u; L� since, from any other expression F 0�u;L� � 0, one can always isolate
u � r�L� and rewrite as above (in particular, this de®nition includes other functions usually found in
the literature such as those written in terms of the stress- or strain-based undamaged energies
u0 � rijC0

ijklrkl=2 � �1ÿ D�u or �u0 � �ijE0
ijkl�kl=2 � u=�1ÿ D��.

From F, the various gradients of the loading function at constant k may be obtained:

N � oF
o�ÿY� � 1; Nijkl � oF

o�ÿY �ijkl

� Cijkl; �32a; b�

nij � oF
orij
� Cijklrkl � �ij: �33�

Note that the three gradients N, N and n are equal to the corresponding rules M, M and m in the theory,
which means associativity at all levels. In general, associativity depends on the particular choice of F such
that its gradients are parallel to the damage rule. In the case of scalar damage, however, because both
damage rule and gradient of F are scalars, it is su�cient that N exists and it will automatically be parallel
to M. Therefore, the only condition for full associativity is that F be expressed in terms of the conjugate
force, i.e. in this case, of u (a more detailed discussion on the various levels of associativity in damage
models and related considerations may be found in Carol et al. (1994)).

The hardening/softening modulus H � ÿoF =ok at constant stress, is also obtained from Eq. (31) as

H � or
oL
ÿ u: �34�

Finally, with mij, nij and H, the expression for the tangent sti�ness is obtained:

Etan
ijkl � eÿL E0

ijkl ÿ
1
�H

rijrkl; �H � or
oL
� u: �35a; b�

As described, the model has only the hardening/softening function r�L� (or, equivalently, r�D�) to be
de®ned. This function may be identi®ed from a single stress±strain curve from experiments, for instance
from a uniaxial test. Once it has been chosen, however, all other features of the model are automatically
®xed.

If further degrees of freedom are needed in the model in order to ®t additional experimental data without
abandoning the domain of isotropic degradation, the model would have to be modi®ed. In order to focus
on the main objective of evolution laws based on the pseudo-log damage rate, this will not be pursued in
this paper. However, a simple extension along this line has already been advanced in (Carol et al., 1998) and
is developed in more detail and inserted in the general context of an `extended' anisotropic degradation in
(Carol et al., 1999).

4. `Basic' anisotropic damage using CDM concepts: secant relations

As explained in Section 2.4, the ®rst step in formulating a speci®c damage model consists of de®ning the
damage variables and the dependency of the secant sti�ness or compliance (16a) on those variables. In the
case of traditional ``�1ÿ D�'' isotropic damage, this was trivial as given by expression (22a,b). For an-
isotropic degradation based on second-order tensor damage variables, however, the task becomes con-
siderably more complicated. In the literature on continuum damage mechanics, additional concepts are
often introduced such as e�ective stress and e�ective strain, as well as strain equivalence, stress equivalence
and energy equivalence. With these concepts, it is possible to establish simpli®ed physical micro±macro
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models of the degraded material, that are the basis to relate the anisotropic secant sti�ness and compliance
operators to the damage variables.

4.1. E�ective stress and strain, energy equivalence

Degradation may be understood as the average e�ect of distributed microcracks. E�ective stress reff
ij and

e�ective strain �eff
ij are de®ned as stress and strain to which the material skeleton between microcracks is

subjected. In this context, the relation between e�ective stress and e�ective strain describes the constitutive
behavior of the undamaged material, which for the sake of simplicity is assumed to be linear elastic and
isotropic:

reff
ij � E0

ijkl�
eff
kl ; �eff

ij � C0
ijklr

eff
kl ; �36a; b�

where E0
ijkl and C0

ijkl are given by Eqs. (23a,b).
Henceforth, the damage variables must relate the e�ective quantities to their nominal or apparent

counterparts, which are the ones that are measured externally and satisfy equilibrium and compatibility at
structural level. In the literature, the relation between nominal and e�ective quantities has been established
in three ways: strain equivalence, stress equivalence and energy equivalence. In analogy to composite
mechanics, strain equivalence (Lemaitre and Chaboche, 1990) infers that e�ective and nominal strains are
equal and stresses di�er, while stress equivalence refers to the opposite. These assumptions may be inter-
preted microscopically in terms of parallel or serial arrangements of elements which fail during the de-
gradation process according to the Voigt and the Reuss models. In spite of strain equivalence being widely
used, this approach (and also the stress equivalence approach) exhibits the signi®cant theoretical short-
coming of producing non-symmetric secant sti�ness and compliance tensors, which introduces loss of
energy conservation in the unloading±reloading regime.

In contrast, energy equivalence automatically induces symmetry in the secant sti�ness and compliance
tensors. In this approach (Cordebois and Sidoro�, 1982), the elastic energy stored in terms of e�ective
quantities with undamaged sti�ness and in terms of nominal quantities with secant sti�ness must be the
same (this de®nition actually requires the undamaged behavior to be linear elastic; a more general deri-
vation without that requirement, which is based on the principle of virtual work, may be found in Carol
and Ba�zant (1997)).

In the energy equivalence approach, neither e�ective strain nor e�ective stress coincide with their
nominal counterparts. Rather, assuming that the nominal-e�ective relations are linear, they must be given
by the same fourth-order ``damage-e�ect'' tensor �aijkl in the following form:

rij � �aijklr
eff
kl ; �eff

ij � �aklij�kl; �37a; b�

which can be also written in inverted form as:

reff
ij � aijklrkl; �ij � aklij�

eff
kl ; �38a; b�

where �aijkl and aijkl are tensors inverse to each other, with all minor (but not necessarily major) symmetries,
i.e.

aijpq�apqkl � �aijpqapqkl � I sym
ijkl : �39�

Combining Eqs. (37) and (38) with Eq. (36), one recovers the secant relations (1a,b), where

Eijkl � �aijpqE0
pqrs�aklrs; Cijkl � apqijC0

pqrsarskl: �40a; b�
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Hereby, major symmetry of secant sti�ness and compliance is indeed guaranteed in this approach. Nota-
tionwise, symbols with overbar are used in the sti�ness version of the model and symbols without in the
dual compliance-based counterpart (in agreement with the general theory, Section 2).

4.2. Isotropic damage in the CDM context

It is useful to rephrase the ``�1ÿ D�'' isotropic damage model from Section 3 within the CDM envi-
ronment just introduced. To do that, we assume

�aijkl � �/ I sym
ijkl ; aijkl � / I sym

ijkl : �41a; b�
These tensors may be written in matrix notation as

�a � �/

1
1

1
1

1
1

26666664

37777775; a � /

1
1

1
1

1
1

26666664

37777775: �42a; b�

Note that, in this matrix representation, a and �a relate two six-component vectors of the same na-
ture, i.e. stresses r � r11; r22; r33; r12; r23; r31� �T and reff � reff

11 ;r
eff
22 ; r

eff
33 ; r

eff
12 ; r

eff
23 ; r

eff
31

� �T
, or strains � �

�11; �22; �33; 2�12; 2�23; 2�31� �T and �eff � �eff
11 ; �

eff
22 ; �

eff
33 ; 2�

eff
12 ; 2�

eff
23 ; 2�

eff
31

� �T
, and therefore, all the terms on the right

half of the matrix actually correspond to the sum of two tensor components (e.g. the term 4,4 of the matrix
a corresponds to a1212 � a1221, etc.).

Replacing Eq. (41) into Eqs. (37) and (38), the nominal-e�ective relations are obtained, which in this case
exhibit simple proportionality:

rij � �/ reff
ij ; reff

ij � / rij; �eff
ij � �/ �ij; �ij � / �eff

ij : �43a; b; c; d�
These equations may now be substituted into Eqs. (36a,b) and the result compared to Eq. (22), which leads
to the relations between the scalar quantities �/ and /, and the traditional scalar damage D:

�/ � 1

/
�

������������
1ÿ D
p

: �44�

4.3. Second-order damage tensors

Disregarding vector-valued damage descriptions because of theoretical and practical shortcomings
(Leckie and Onat, 1981; Carol et al., 1991), a second-order symmetric tensor seems to be the simplest
option to represent anisotropic damage in a consistent manner. Similar to the stress or strain tensors, the
second-order symmetric damage tensor can also be decomposed spectrally and represented graphically in a
convenient way. All those advantages were recognized by several authors who proposed either the direct
generalization of D to a second-order symmetric damage tensor Dij, which varies between zero and dij as
damage progresses (Murakami and Ohno, 1980; Cordebois and Sidoro�, 1982; Murakami, 1987), or the use
of an integrity tensor �/ij � dij ÿ Dij, which has exactly the opposite variation (Betten, 1983; Valanis, 1990).
The two tensors �/ij and Dij share principal axes and their principal values vary between 0 and 1, and are
related according to D�i� � 1ÿ �/�i�.

Actually, one may think of a number of second-order tensors to characterize damage, all with the same
principal axes and simple relations between their principal values; the choice of which is mainly a matter of
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convenience. Additional to the integrity tensor �/ij, we introduce its square root �wij (which also varies from
dij to 0) and their inverses /ij and wij (which vary from dij to1). These tensors are all symmetric, and their
principal values satisfy the following relations:

�/ij � �wik �wkj; �/�i� � �w2
�i�; �45a; b�

/ij � wikwkj; /�i� � w2
�i�; �46a; b�

�/ik/kj � /ik
�/kj � dij; �/�i� �

1

/�i�
; �47a; b�

�wikwkj � wik �wkj � dij; �w�i� � 1

w�i�
: �48a; b�

In the case of isotropic degradation, all these tensors reduce to their volumetric form:

�/ij � �/dij; /ij � /dij; �wij � �wdij; wij � wdij: �49a; b; c; d�

4.4. `Basic' anisotropic formulation based on product-type symmetrization

After introducing the tensor-valued damage variables, the nominal-e�ective relations (37) are established
so that the damage-e�ect tensors a and �a can be identi®ed. However, attempting a direct generalization
of the one-dimensional relation r � �/reff where �/ represents an e�ective area reduction, one ®nds
rij � �/ikr

eff
kj , where symmetry cannot be ensured for rij even if reff

kj and �/ik are symmetric. This indicates that
some form of symmetrization should be applied. In the literature, both ``sum-type'' and ``product-type''
symmetrizations have been considered (Voyiadjis and Park, 1997). Additionally, each of them can be de-
veloped either in terms of stress or in terms of strain, leading to various forms of the damage-e�ect tensors
�aijkl or aijkl. However, a careful examination shows that, with `product-type' symmetrization, both versions
of the tensor-valued damage formulation (i.e. strain- and stress-based) are fully equivalent, whereas with
the `sum type' they are not. For this reason, product symmetrization is the one considered in the following.
The parallel derivation with sum-type symmetrization is enclosed as Appendix B.

Product-type symmetrization of e�ective stresses was originally proposed (Cordebois and Sidoro�, 1982)
as

rij � �wikr
eff
kl �wlj: �50�

This may be conveniently rewritten in terms of the damage-e�ect tensor �aijkl:

rij � �aijklr
eff
kl ; �aijkl � 1

2
��wik �wjl � �wil �wjk�; �51a; b�

where advantage has been taken of the symmetry of reff to obtain an �a with all minor (and major) sym-
metries. Note that, due to the energy equivalence approach and related expressions (37b), this assumption
also implies

�eff
ij � �wik�kl �wlj: �52�
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Matrix representation of the tensor �aijkl in the principal axes of damage (i.e. the principal axes of Dij, /ij,
etc.) exhibits the following diagonal form, which has been used repeatedly in the literature on anisotropic
damage (Shen et al., 1989; Chow and Wang, 1987b; Hansen and Schreyer, 1992):

�a �

�/�1�
�/�2�

�/�3� ���������������
�/�1� �/�2�

q
���������������
�/�2� �/�3�

q
���������������
�/�3� �/�1�

q

2666666666666664

3777777777777775
: �53�

Note that the term a�ecting the shear±stress component i; j is a product-type average of �/i and �/j instead of
the sum-type average obtained using the `sum-type' approach (Appendix B, Eq. (B.3)). To illustrate the
di�erence, consider for instance the case in which damage is fully mobilized in principal direction 1, whereas
it is zero in principal direction 2. In the summation approach, the damage e�ect coe�cient �a1212 � �a1221

would be 0:5 (i.e. the shear `e�ective area' would still be half of the original), whereas in the product ap-
proach it is zero, i.e. no shear stress-carrying area remains.

Now, replacing Eq. (51b) in Eq. (40a) and taking advantage of the minor symmetries of E0, one obtains

Eijkl � �wip �wjq �wkr �wlsE0
pqrs: �54�

Further, replacing the initial elastic sti�ness (23a), and making the appropriate products and substitutions,
one obtains

Eijkl � K0 �/ij
�/kl � G0 �/ik

�/jl

�
� �/il

�/jk

�
; �55�

which can be rewritten in terms of any other pair of elastic constants, obtaining in each case expressions
analogous to the initial isotropic sti�ness tensor, in which all Kronecker deltas dij have been replaced with
�/ij. Note that this expression for Eijkl actually corresponds to the model initially proposed by Valanis
(1990), although that derivation was made starting from a speci®c form of the elastic potential, without
resorting to the concepts of e�ective stress, e�ective strain or energy equivalence.

In the principal axes of damage, the secant sti�ness and compliance tensors may be written as 6� 6
matrices:

E �

�/2
�1��K0 � 2G0� �/�1� �/�2�K

0 �/�1� �/�3�K
0

�/�2� �/�1�K
0 �/2

�2��K0 � 2G0� �/�2� �/�3�K
0

�/�3� �/�1�K
0 �/�3� �/�2�K

0 �/2
�3��K0 � 2G0�

�/�1� �/�2�G
0

�/�2� �/�3�G
0

�/�3� �/�1�G
0

266666666666664

377777777777775
; �56�
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C �

1
�/2
�1�E

0

ÿm0

�/�1� �/�2�E0

ÿm0

�/�1� �/�3�E0

ÿm0

�/�1� �/�2�E0

1
�/2
�2�E

0

ÿm0

�/�2� �/�3�E0

ÿm0

�/�1� �/�3�E0

ÿm0

�/�2� �/�3�E0

1
�/2
�3�E

0

2�1�m0�
�/�1� �/�2�E0

2�1�m0�
�/�2� �/�3�E0

2�1�m0�
�/�1� �/�3�E0

2666666666666664

3777777777777775
: �57�

Note that, in order to obtain work conjugates, vector representation of strains includes the usual factor 2 in
the shear components, while stresses do not. For this reason, matrix representation of sti�ness and com-
pliance does not follow the same rules as that of damage-e�ect tensors used in a previous section. For E,
terms on the right half of the matrix are equal to one half of the sum of the corresponding tensor com-
ponents (i.e. the term 4,4 of E is equal to �E1212 � E1221�=2 � E1212 due to minor symmetries); while for C,
terms on the lower half of the matrix are equal to twice the sum of the corresponding tensor components
(i.e. term 4,4 of the matrix is equal to 2�C1212 � C1221� � 4C1212).

Compliance matrix (57) may be compared to the traditional compliance matrix of orthotropic
elasticity:

Corth �

1
E1

ÿm12

E2

ÿm13

E3

ÿm21

E1

1
E2

ÿm23

E3

ÿm31

E1

ÿm32

E2

1
E3

1
G12

1
G23

1
G31

26666666664

37777777775
; �58�

which results in the following equivalences:

E1 � �/2
�1�E

0; E2 � �/2
�2�E

0; E3 � �/2
�3�E

0;

m12 �
�/�2�
�/�1�

m0; m13 �
�/�3�
�/�1�

m0; m21 �
�/�1�
�/�2�

m0;

m23 �
�/�3�
�/�2�

m0; m31 �
�/�1�
�/�3�

m0; m32 �
�/�2�
�/�3�

m0;

G12 � �/�1� �/�2�
E0

2�1� m0� ; G23 � �/�2� �/�3�
E0

2�1� m0� ; G31 � �/�3� �/�1�
E0

2�1� m0� :

�59a±l�

The dual formulation of the product-type, in terms of strain/compliance, with its dual damage-e�ect
tensor aijkl, secant compliance Cijkl and their matrix representations, yields

�ij � wik�
eff
kl wlj; reff

ij � wikrklwlj; �60a; b�

�ij � aijkl�
eff
kl ; aijkl � 1

2
�wikwjl � wilwjk�; �61a; b�
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a �

/�1�
/�2�

/�3� ���������������
/�1�/�2�

p ���������������
/�2�/�3�

p ���������������
/�3�/�1�

p

2666666664

3777777775
: �62�

Cijkl � wipwjqwkrwlsC0
pqrs; �63�

Cijkl � ÿm0

E0
/ij/kl �

1� m0

2E0
/ik/jl

ÿ � /il/jk

�
; �64�

C �

/2
�1�

1
E0 /�1�/�2�

ÿm0

E0 /�1�/�3�
ÿm0

E0

/�2�/�1�
ÿm0

E0 /2
�2�

1
E0 /�2�/�3�

ÿm0

E0

/�3�/�1�
ÿm0

E0 /�3�/�2�
ÿm0

E0 /2
�3�

1
E0

/�1�/�2�
2�1�m0�

E0

/�2�/�3�
2�1�m0�

E0

/�3�/�1�
2�1�m0�

E0

2666666666664

3777777777775
: �65�

A comparison of this matrix with the compliance matrix for orthotropic elasticity (58) yields the same
twelve equivalences for the elastic coe�cients (59), provided the tensors /ij and �/ij are inverse to each other.
Therefore, we verify that both stress and strain formulations based on the product symmetrization of ef-
fective quantities are fully equivalent, i.e. a and C are the inverses of �a and E.

The same comparison also gives information about the type of anisotropy that is obtained with this
approach. The expressions obtained for secant sti�ness and compliance contain ®ve independent para-
meters (E0, m0 plus three principal values of damage), while general orthotropic elasticity has nine. This
means that the `basic' anisotropic damage formulation represents only a relatively restricted form of an-
isotropy. This is one of the motivations for a more general approach developed in (Carol et al., 1999).

5. Pseudo-logarithmic damage rate and conjugate forces

After the second-order tensor damage variables have been selected, and the dependency of Cijkl (or Eijkl)
on those variables established, the next step is to identify the corresponding terms of the general theory
described in Section 2. As the general theory was presented in terms of stress and compliance, derivations in
this section will also follow the same approach. Among the various tensors de®ned, the inverse integrity
tensor is selected as the primary damage variable D�. The choice of Cijkl and /pq are only for convenience.
Other possibilities would produce dual developments and, with the appropriate substitutions and con-
versions, ®nal equations should be fully equivalent.

As the ®rst step, Cijkl given in Eq. (64) is di�erentiated:

_Cijkl � oCijkl

o/pq

_/pq; �66a�
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oCijkl

o/pq
� ÿm0

2E0
�dipdjq

� � diqdjp�/kl � /ij�dkpdlq � dkqdlp�
�� 1� m0

4E0
�dipdkq

� � diqdkp�/jl

� /ik�djpdlq � djqdlp� � �dipdlq � diqdlp�/jk � /il�djpdkq � djqdkp�
�
: �66b�

Replacing _Cijkl into Eq. (13c), one obtains the expression of the dissipation rate from which the conjugate
force ÿY/

pq conjugate to /pq is identi®ed:

_d � �ÿY/
pq� _/pq; �67a�

ÿY/
pq �

1

2
rij

oCijkl

o/pq
rkl � ÿm0

E0
�rkl/kl�rpq � 1� m0

E0
rpk/klrlq: �67b; c�

This force, analogous to what was obtained in earlier papers in terms of sti�ness and strains (e.g. Neilsen
and Schreyer, 1992), has no clear physical meaning, which makes it di�cult to propose and interpret
loading functions and damage rules (Chaboche, 1992). From Eq. (50), however, one can see that
rkl/kl � reff

kk in Eq. (67c), which motivates the search for an expression of ÿYpq in terms of e�ective
quantities exclusively. This is possible and conveniently achieved by changing the damage variable involved
in the dissipation Eq. (67a), from the rate of /pq to the rate of a pseudo-logarithmic damage tensor _Lrs

de®ned as

_Lrs � 2�wrp
_/pq �wqs or _/pq � 1

2
wpr

_Lrswsq: �68a; b�
If the principal axes of damage remain constant, the new tensor coincides with the logarithm of the square
inverse integrity tensor, i.e. L � ln /2 (logarithm of a tensor de®ned as a tensor function, i.e. with same
principal axes and logarithm of the principal values). In the case that the principal axes rotate, _L de®ned by
Eq. (68a) cannot be guaranteed to be an exact di�erential, and therefore a general explicit relation between
the two tensors is not available. Nevertheless, convenient relations may be established between some of
their components and invariants, as developed in Appendix A and used later in the article.

The lack of a general explicit relation between Lij and /ij does not actually represent a practical di�culty
because the pseudo-log damage is only used in rate form due to its properties of exhibiting a convenient
conjugate force. Once the damage rule in terms of _Lij is established, the rate _/ij can be always evaluated
with Eq. (68b) and the integration process needed in the numerical implementation of the model can be
always carried out directly in terms of /ij, which is the variable that enters directly the expressions of secant
compliance or sti�ness.

With the new pseudo-log damage rate, Eqs. (66a) and (66b) become:

_Cijkl � oCijkl

oLrs

_Lrs; �69a�

oCijkl

oLrs
� ÿm0

4E0
�wirwjs

� � wiswjr�/kl � /ij�wkrwls � wkswlr�
�� 1� m0

8E0
�wirwks

� � wiswkr�/jl

� /ik�wjrwls � wjswlr� � �wirwls � wiswlr�/jk � /il�wjrwks � wjswkr�
�
: �69b�

Introducing _C into Eq. (13), the dissipation rate is obtained and the new thermodynamic force ÿYrs,
conjugate to Lrs, is identi®ed:

_d � �ÿYrs� _Lrs; ÿYrs � ÿm0

2E0
reff

kk

ÿ �
reff

rs �
1� m0

2E0
reff

rk reff
ks : �70a; b�

As linear isotropic elasticity has been assumed as the relation between reff
ij and �eff

kl , i.e. Eq. (36) with Eq.
(23), it is not di�cult to verify that this force may be simply rewritten as
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ÿYrs � 1
2
reff

rk �
eff
ks : �71�

Due to the coaxiality of reff
ij and �eff

ij , this conjugate force is another symmetric second-order tensor with the
same principal axes, and principal values equal to

ÿY�i� � 1
2
reff
�i� �

eff
�i� ; i � 1; 3: �72�

The conjugate force tensor (71) exhibits the convenient property that its ®rst invariant is equal to the
current value of elastic energy

ÿYrr � 1
2
reff

rk �
eff
kr � u; �73�

and its volumetric and deviatoric components can be simply expressed as

ÿYV � u
3
; ÿYD

rs �
1

2
reff

rk �
eff
ks ÿ

u
3

drs: �74a; b�

The dissipation rate (70) can be rewritten as the sum of volumetric and deviatoric contributions:

_d � u _LV � 1

2
reff

rk �
eff
ks

�
ÿ u

3
drs

�
_LD

rs: �75�

This expression may now be compared to the dissipation rate (30) of the isotropic formulation of Section 3.
The logarithmic damage rate and conjugate force of that section, both scalar, may be immediately identi®ed
with the volumetric components here. This con®rms that the basic isotropic formulation is recovered as a
particular case when the quasi-log rate of damage stays purely volumetric, i.e. when the damage increments
remain isotropic.

6. Loading function and pseudo-log damage rule

It seems natural to de®ne the loading function F in terms of the conjugate forces ÿYij and of the
previous history. Here, we consider the following type of expression:

F � f �ÿYij� ÿ r�history� � 0: �76�
The gradients of the loading function in the damage, compliance and stress spaces may be calculated using
Eqs. (19b) and (15b) with D� � Lij:

Nrs � of
o�ÿYrs� ; Nijkl � oCijkl

oLrs
Nrs; nij � oCijkl

oLrs
Nrsrkl; �77a; b; c�

where ÿYrs is given by Eq. (71) and oCijkl=oLrs by Eq. (69b). If the model is associated, Mrs �Nrs,
Mijkl � Nijkl and mij � nij. Otherwise, Mrs has to be speci®ed independently, and Mijkl and mij follow from
expressions analogous to Eqs. (77b,c), i.e.

Mrs � og
o�ÿYrs� ; Mijkl � oCijkl

oLrs
Mrs; mij � oCijkl

oLrs
Mrsrkl: �78a; b; c�

Applying the chain rule to the derivatives of F, Eq. (76), one also obtains the hardening/softening pa-
rameter

H � ÿ oF
ok r

���� � or
ok
ÿNpq

o�ÿYpq�
oLrs

����
r

Mrs: �79�

From this, we may also obtain �H � H � n : E : m or, using the dual strain-based derivation (Carol et al.,
1994), the more convenient form,
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�H � ÿ oF
ok �

���� � or
ok
ÿNpq

o�ÿYpq�
oLrs

����
�

Mrs: �80�

To formulate the resistance function r, previous history is naturally represented by the current damage
state. Thus, we can usually also replace or=ok � �or=oLrs�Mrs. With n, m and �H obtained from f, g and r,
plastic multiplier and tangential sti�ness follow automatically using Eqs. (7) and (8), and the formulation is
completed. Partial derivatives o�ÿYpq�=oLrs at both constant nominal stress and at constant nominal strain
turn out to be lengthy expressions, and are developed in Appendix C.

A simple choice for f is in terms of the invariants of ÿYij. This actually does not contradict the an-
isotropic nature of the model because in the ÿYij space, only e�ective stress and e�ective strain are in-
volved; if these are replaced using Eqs. (52) and (60b), the damage tensor comes into the picture resulting in
an anisotropic loading function in terms of nominal stress or strain. Thus, it makes sense to consider the
space of principal values of the conjugate force ÿY�1�, ÿY�2�, ÿY�3�. In that space, one may represent
concepts such as p-axis, deviatoric planes, loading surface F � 0 and damage rule, analogous to what is
customary in the principal stress space in the context of plasticity theory (Fig. 3).

The choice of a pseudo-log damage rate and the space de®ned by its conjugate force brings about a
number of interesting advantages. As shown in Appendix A, it turns out that the volumetric part of the
pseudo-log ¯ow rule, represented in the ÿY�1�, ÿY�2�, ÿY�3� space by its component parallel to the p-axis,
causes only increments of isotropic degradation. On the other hand, the deviatoric part of the pseudo-log
damage rule (i.e. its component on the deviatoric plane) causes only increments of anisotropic degradation.
In this way, we have a very simple and understandable separation of e�ects that may be very useful for the
development of speci®c models (Fig. 3). For instance, it is trivial to verify that the traditional ``�1ÿ D�''
associated scalar damage model is recovered with a loading surface parallel to the p-plane.

Fig. 3. Space of principal conjugate forces and volumetric/deviatoric (isotropic/anisotropic) decomposition of the damage rule in

pseudo-log space.
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The condition that the dissipation (70a) must be always positive, leads to the conditions that the loading
surface must be convex in the ÿYij space and must include its origin, analogous to similar arguments
classical in elasto-plasticity (Hill, 1950; Malvern, 1969). Additional constraints to the pseudo-log damage
rule may be derived from its own de®nition as the rate of a damage measure. The inverse integrity / has
been de®ned as a tensor which evolves between dij and1 as damage progresses. If si denotes the cartesian
components of a generic unit vector (sisi � 1), the projection si/ijsj may be interpreted as a geometric
measure of the damage on a plane with normal oriented with that direction (i.e. inverse of a stress-carrying
area fraction). Due to the irreversible nature of damage (no healing is considered in this study), it seems
reasonable to assume that the damage on any given plane should always increase or remain constant, but
never decrease. This means that, for any orientation s, we must have

si
_/ijsj P 0: �81�

This implies that the damage rate tensor _/ij be positive semi-de®nite, i.e. that all its eigenvalues be positive
or zero. By replacing Eq. (68b) in the previous equation, one obtains

1

2
s0p _Lpqs0q �

_k
2

s0pMpqs0p P 0; s0p � wpisi �82�

in which the square root integrity tensor wpi is in general non-singular and therefore s0p is also any arbi-
trary orientation. Since the inelastic multiplier _k must be non-negative, this means that the pseudo-log
damage rule Mpq must also be positive semi-de®nite, i.e. that its principal values must satisfy M�1�P 0,
M�2�P 0 and M�3�P 0. In terms of a geometric representation in Fig. 3, this implies that the vector rep-
resenting the damage rule should be part of the positive±positive±positive octant, which is a severe re-
striction if compared with traditional ¯ow rules in stress space. For instance, associated models with
surfaces similar to von Mises or Drucker±Prager (in which the normal may have negative component on
one of the axes) are not allowed here. On the other hand, a surface similar to Rankine in the ÿY�1�, ÿY�2�,
ÿY�3� space would sit in the limit of the stated restriction, with only one positive principal value of Mij at a
time, while the other two are zero. This model, that we will call `pseudo-Rankine', actually exhibits very
appealing properties and is developed in detail and illustrated with some application examples in a com-
panion article.

7. Concluding remarks

(1) The theoretical framework for elastic degradation and damage proposed previously by the authors
proves to be a powerful and robust tool for developing consistent material formulations in an orderly and
systematic manner.

(2) A basic formulation of anisotropic damage based on a second-order damage tensor, energy equiv-
alence and product-type symmetrization, is developed within that framework, and agrees with secant fo-
mulations widely used in the literature. With the usual damage tensors, however, the corresponding
conjugate forces are complicated and physically meaningless, which makes it di�cult to establish evolution
laws.

(3) This problem is overcome by introducing the pseudo-logarithmic rate of damage. This new proposal
brings attractive properties to the new damage variable and its corresponding conjugate force, which be-
comes a simple product of e�ective stresses and e�ective strains.

(4) Perhaps the most salient of these properties is the separation of isotropic and anisotropic e�ects that
is induced in pseudo-log space; the volumetric part of the damage rule only generates increments of iso-
tropic damage, while its deviatoric part only generates anisotropic degradation. This separation makes it
more physical and intuitive to formulate evolution laws with speci®c features. The classical isotropic scalar
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damage model becomes the simplest ®rst-invariant loading surface represented by cut-o� p-planes in the
conjugate force space.

(5) A speci®c implementation of these principles in a `generalized pseudo-Rankine model' formulation,
together with some examples of veri®cation, are included in a companion Part II article.
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Appendix A. Pseudo-logarithmic rate of a symmetric second-order tensor

If / is a second-order symmetric tensor with cartesian components /ij, we de®ne its pseudo-logarithmic
rate _Lij as

_Lij � 2�wip
_/pq �wqj �A:1�

with the notation �/ � /ÿ1 and �w equal to the square root tensor of �/, so that �wrp �wps � �/rs.
The original tensor /, its inverse and their square roots may be decomposed in product form

/ij � /wij;
�/ij � �/ �wij; wij � wvij; �wij � �w�vij; �A:2a; b; c; d�

where

/ � �det /�1=3
; �/ � �det �/�1=3 � 1

/
; w � �det w�1=3 �

����
/

p
; �w � �det �w�1=3 � 1����

/
p ; �A:3�

wij �
1

/
/ij;

�wij �
1
�/

�/ij; vij � 1

w
wij; �vij � 1

�w
�wij �A:4a; b; c; d�

in which w, �w, v and �v are all isochoric tensors (namely tensors with unit determinant). These tensors also
satisfy w � v2 and �w � �v2. Using decomposition (A.2a), the rate of /ij can be expressed as

_/ij � _/wij � / _wij: �A:5�
If this equation and Eq. (A.2d) are substituted in the pseudo-log rate (A.1), one obtains the additive de-
composition:

_Lij � _Ldij � _lij; _L � 2
_/
/
; _lij � 2�vip

_wpq�vqj; �A:6�

where the ®rst component, _Ldij, is purely volumetric, and the second, _lij, is purely deviatoric. The latter can
be veri®ed by calculating the trace of _lij:

_lii � 2�vip
_wpq�vqi � 2 �wpq

_wpq: �A:7�
The tensors �wpq and _wpq can be expressed in terms of the principal values w�i� and directions n�i�k of w:
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_lii � 2
X3

k�1

1

w�k�
n�k�p n�k�q

" # X3

l�1

_w�l�n
�l�
p n�l�q

"
�
X3

l�1

w�l� _n�l�p n�l�q

�
� n�l�p _n�l�q

�#
: �A:8�

Taking into account that n�k�p n�l�p � dkl and _n�k�p n�k�p � 0, the previous expression can be developed and
simpli®ed, and the result multiplied by the unit determinant w�1�w�2�w�3� � 1, yielding

_lii � 2
_w�1�
w�1�

"
�

_w�2�
w�2�
�

_w�3�
w�3�

#
� 2 _w�1�w�2�w�3�
h

� w�1� _w�2�w�3� � w�1�w�2� _w�3�
i
� 0: �A:9�

The last expression is equal to zero because is equal to the di�erentiation of the same unit determinant
w�1�w�2�w�3� � 1.

The volumetric part of the pseudo-log tensor, L � Lkk=3, may be explicitly integrated in terms of
/ � �det /�1=3

. Directly from (A.6b), one obtains

L � ln /2
ÿ �

; / � eL=2: �A:10a; b�

Appendix B. Secant sti�ness/compliance based on sum-type symmetrization of e�ective stresses

The fundamental assumption of the sum-type symmetrization may be expressed as (Lemaitre and
Chaboche, 1990; Murakami, 1988)

rij � 1
2

�/ikr
eff
kj

�
� reff

ik
�/kj

�
; �B:1�

where �/ij is the integrity tensor. This may be rewritten in terms of the damage±e�ect tensor �a:

rij � �aijklr
eff
kl ; �aijkl � 1

4
�/ikdjl

�
� �/ildjk � dik

�/jl � dil
�/jk

�
; �B:2a; b�

where advantage has been taken of the symmetry of reff
kl to obtain an �aijkl with all minor and major

symmetries. The 6� 6 matrix representation of �aijkl in the reference system given by the principal directions
of damage is diagonal:

�a �

�/�1�
�/�2�

�/�3�
�/�1�� �/�2�

2
�/�2�� �/�3�

2
�/�3�� �/�1�

2

26666666664

37777777775
: �B:3�

Now substituting Eq. (B.2b) into Eq. (40a) and taking advantage of the symmetry of Kronecker delta dij

and integrity tensor �/ij, one obtains the secant sti�ness in terms of the integrity tensor:

Eijkl � K0 �/ij
�/kl �

G0

2
�/ik

�/jl

�
� �/il

�/jk �
1

2
�/is

�/skdjl � 1

2
�/is

�/sldjk � 1

2
dik

�/js
�/sl �

1

2
dil

�/js
�/sk

�
: �B:4�

If compared to its counterpart in the product-type symmetrization (55), this expression di�ers in the shear
terms. The di�erences may be seen better on the matrix representation of Eijkl in the principal axes of
damage:
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E �

�/2
�1��K0 � 2G0� �/�1� �/�2�K

0 �/�1� �/�3�K
0

�/�2� �/�1�K
0 �/2

�2��K0 � 2G0� �/�2� �/�3�K
0

�/�3� �/�1�K
0 �/�3� �/�2�K

0 �/2
�3��K0 � 2G0�

�/�1�� �/�2�
2

� �2

G0

�/�2�� �/�3�
2

� �2

G0

�/�3�� �/�1�
2

� �2

G0

266666666666664

377777777777775
;

�B:5�
which is the counterpart of Eq. (56). This sti�ness matrix may be inverted with K0 and G0 being replaced by
E0 and m0 to obtain the counterpart of Eq. (57)

C �

1
�/2
�1�E

0
ÿm0

�/�1� �/�2�E0

ÿm0

�/�1� �/�3�E0

ÿm0

�/�2� �/�1�E0

1
�/2
�2�E

0

ÿm0

�/�2� �/�3�E0

ÿm0

�/�3� �/�1�E0

ÿm0

�/�3� �/�2�E0

1
�/2
�3�E

0

2
�/�1�� �/�2�

� �2
2�1�m0�

E0

2
�/�2�� �/�3�

� �2
2�1�m0�

E0

2
�/�3�� �/�1�

� �2
2�1�m0�

E0

2666666666666666664

3777777777777777775

:

�B:6�
This compliance matrix may be compared to the traditional compliance matrix for orthotropic elasticity
(58), which results in the following equivalences:

E1 � �/2
�1�E

0; E2 � �/2
�2�E

0; E3 � �/2
�3�E

0;

m12 �
�/�2�
�/�1�

m0; m13 �
�/�3�
�/�1�

m0; m21 �
�/�1�
�/�3�

m0;

m23 �
�/�3�
�/�2�

m0; m31 �
�/�1�
�/�3�

m0; m32 �
�/�2�
�/�3�

m0;

G12 �
�/�1� � �/�2�

2

 !2

E0

2�1� m0� ; G23 �
�/�2� � �/�3�

2

 !2

E0

2�1� m0� ;

G31 �
�/�3� � �/�1�

2

 !2

E0

2�1� m0� : �B:7�

Comparing these equations to their counterparts in the product-type symmetrization (59), Young's moduli
and Poisson's ratios are the same, but the shear moduli di�er: here the original values G0 have been reduced
by the squares of the sum averages � �/�i� � �/�j��=2, while there G0 was a�ected by the product �/�i� �/�j� (i.e. by
the square of the product averages of the two quantities).
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The sum-type formulation can also be derived in a dual way, i.e. in terms of strain and compliance
instead of stress and sti�ness. This leads to the following expressions for the dual damage-e�ect tensor aijkl

and compliance Cijkl:

�ij � 1
2

/ik�
eff
kj

�
� �eff

ik /kj

�
; �B:8�

�ij � aijkl�
eff
kl ; aijkl � 1

4
/ikdjl

ÿ � /ildjk � dik/jl � dil/jk

�
; �B:9�

Cijkl � ÿm0

E0
/ij/kl �

1� m0

4E0
/ik/jl

�
� /il/jk �

1

2
/is/skdjl � 1

2
/is/sldjk � 1

2
dik/js/sl �

1

2
dil/js/sk

�
:

�B:10�

If the reference system coincides with the principal axes of damage, these fourth-order tensors exhibit the
following 6� 6 matrix representation:

a �

/�1�
/�2�

/�3�
/�1��/�2�

2

/�2��/�3�
2

/�3��/�1�
2

266666666664

377777777775
; �B:11�

C �

/2
�1�

1
E0 /�1�/�2�

ÿm0

E0 /�1�/�3�
ÿm0

E0

/�2�/�1�
ÿm0

E0 /2
�2�

1
E0 /�2�/�3�

ÿm0

E0

/�1�/�3�
ÿm0

E0 /�2�/�3�
ÿm0

E0 /2
�3�

1
E0

/�1��/�2�
2

� �2
2�1�m0�

E0

/�2��/�3�
2

� �2
2�1�m0�

E0

/�3��/�1�
2

� �2
2�1�m0�

E0

2666666666666664

3777777777777775
:

�B:12�
Identi®cation of the various components with the traditional orthotropic elastic compliance (58) yields

E1 � 1

/2
�1�

E0; E2 � 1

/2
�2�

E0; E3 � 1

/2
�3�

E0;

m12 �
/�1�
/�2�

m0; m13 �
/�1�
/�3�

m0; m21 �
/�2�
/�1�

m0;

m23 �
/�2�
/�3�

m0; m31 �
/�3�
/�1�

m0; m32 �
/�3�
/�2�

m0;
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G12 � 2

/�1� � /�2�

 !2

E0

2�1� m0� ; G23 � 2

/�2� � /�3�

 !2

E0

2�1� m0� ;

G31 � 2

/�3� � /�1�

 !2

E0

2�1� m0� : �B:13�

With the assumption that the tensors �/ij and /ij are inverse to each other (i.e. that �/�i� � 1=/�i�, i� 1±3), the
previous expressions are not equivalent to their stress-based counterparts (B.3), (B.6) and (B.7). Although
Young's moduli and Poisson's ratios coincide in both versions of the theory, the three shear moduli do not,
and neither do the shear-related terms of the damage±e�ect tensors (i.e. the inverse of /�1� � /�2� is not equal
to 1=/�1� � 1=/�2�).

Therefore, it can be concluded that the sum-type symmetrization in terms of stress/sti�ness and its dual
in terms of stress/compliance are not equivalent, and they actually represent alternative incompatible ap-
proaches.

Appendix C. Partial derivatives o�ÿYpq�=oLrs at constant nominal stress or constant nominal strain

Considering ®rst the derivative at constant nominal stress, using the chain rule we can decompose the
desired derivative in the following product of two terms:

o�ÿYij�
oLrs r

���� � o�ÿYij�
owab

����
r

owab

oLrs

����
r

: �C:1�

To obtain the ®rst term of the product, we start from the conjugate force (71) and replace e�ective strain in
terms of e�ective stress using the elastic isotropic law (36b) with (23b), and e�ective stress in terms of
nominal stress (60b). This yields

ÿYij � ÿm0

2E0
wpqrqrwrp

ÿ �
wikrklwlj � 1� m0

2E0
wikrklwlpwpqrqrwrj: �C:2�

Now, we can make the derivative with respect to the symmetric tensor wab, at constant nominal stress. By
doing so, and after some rearrangements and substitution of nominal stress back in terms of e�ective stress
(50), we obtain

o�ÿYij�
owab

����
r

� ÿm0

4E0
2 reff

ak �wkb

�h
� �wakr

eff
kb

�
reff

ij � reff
kk

ÿ � �dai �wbk

�
� dbi �wak�reff

kj � �daj �wbk � dbj �wak�reff
ki

�i
� 1� m0

4E0
�dai �wbk

h
� dbi �wak� reff

ÿ �2

kj
� reff

ik �wkar
eff
bj

�
� �wkbr

eff
aj

�
� �daj �wbk � dbj �wak� reff

ÿ �2

ki
� reff

jk �wkar
eff
bi

�
� �wkbr

eff
ai

�i
: �C:3�

The derivative in the second term on the right-hand side of Eq.(C.1) is actually the same at constant
stress or strain, because wab is the square root of the integrity tensor /cd and the rate of this is directly
related to the pseudo-log rate of damage _Lab by (68), without any other variable involved. To calculate this
factor, we decompose again this derivative into two using the chain rule:

owab

oLrs
� owab

o/cd

o/cd

oLrs
: �C:4�
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The second factor here is the easiest since, directly from the de®nition of pseudo-log rate (68) and taking
into account the symmetry of _Lrs, one has

o/cd

oLrs
� 1

4
wcrwds� � wdswcr�: �C:5�

The ®rst factor in Eq. (C.4) is a little trickier. It represents the derivative of the symmetric second-order
tensor w with respect to its second power / � w2. What can be easily obtained is its inverse, by di�eren-
tiating the square relation /cd � wcawad :

_/cd � wck _wad � _wcawad � o/cd

owab
_wab; �C:6a�

o/cd

owab
� 1

2
wcaddb� � wcbdda � wdadcb � wdbdca�; �C:6b�

where advantage has been taken of the symmetry of _w. In the principal axes of damage, this fourth-order
tensor has a simple 6� 6 diagonal matrix representation that can be immediately inverted to obtain the
desired derivative in the same axes:

o/

ow
�

2w�1�
2w�2�

2w�3�
w�1� � w�2�

w�2� � w�3�
w�3� � w�1�

26666664

37777775; �C:7a�

ow

o/
�

1
2w�1�

1
2w�2�

1
2w�3�

1
w�1��w�2�

1
w�2��w�3�

1
w�3��w�1�

26666666664

37777777775
: �C:7b�

However, in order to be introduced in previous equations, we need a tensorial expression of this derivative
which is not as simple as the matrix form would suggest. Hoger and Carlson (1984) give the general ten-
sorial form, which turns out to be a sum of 18 di�erent products of /ij, wij and dij, each of them multiplied
by a scalar factor function of the principal values w1, w2 and w3. To our purposes, the alternative formulas
given in of (Ogden, 1984, pp. 162±163) for the derivative of a tensor function of a tensor in terms of its
spectral decomposition, seem more advantageous. If the unit vectors s�I�i , I� 1,2,3 denote the principal
directions of damage, i.e.

wij �
X3

I�1

w�I� s�I�i s�I�j ; /ij �
X3

I�1

/�I� s�I�i s�I�j ; �C:8a; b�

where implicit summation does not apply to indices between parentheses, Ogden's equations applied to our
case give
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owab

o/cd
� 1

2

X3

I�1

1

w�I�
s�I�a s�I�b s�I�c s�I�d �

1

2

X3

I;J 6�I

1

w�I� � w�J�
s�I�a s�J�b s�I�c s�J�d

�
� s�J�c s�I�d

�
: �C:9�

Note that for this particular tensor function (w � /1=2), it turns out that the terms of the ®rst summatory
are equal to the terms that would be obtained, if I � J in the second summatory. This allows one to merge
both in the simpler form:

owab

o/cd
� 1

4

X3

I ;J�1

1

w�I� � w�J�
s�I�a s�J�b

�
� s�J�a s�I�b

�
s�I�c s�J�d

�
� s�J�c s�I�d

�
�C:10�

in which major symmetry has also been introduced, motivated by the major symmetry observed for the
inverse tensor (C.6b). The veri®cation that, in this symmetrized form, tensors (C.10) and (C.6b) are inverse
to each other is immediate by making the product and taking into account that

P3
I�1 s�I�i s�I�j � dij. Also, by

reducing the unit vectors s�I�i to their canonical form it is possible to verify that the matrix form (C.7) is
recovered.

Eqs. (C.9) and (C.5) may now be introduced into (C.4). Taking advantage that s�I�c wcr � w�I�s�I�r , this leads
to

owab

oLrs
� 1

8

X3

I�1

X3

J�1

w�I�w�J�
w�I� � w�J�

s�I�a s�J�b

�
� s�J�a s�I�b

�
s�I�r s�J�s

ÿ � s�J�r s�I�s

�
� 1

8

X3

I�1

X3

J�1

1

�w�I� � �w�J�
s�I�a s�J�b

�
� s�J�a s�I�b

�
s�I�r s�J�s

ÿ � s�J�r s�I�s

�
: �C:11�

This and Eq. (C.3) may be ®nally introduced into Eq. (C.1) to obtain the original partial derivative at
constant nominal stress.

The partial derivative at constant strain may be obtained following a dual derivation:

o�ÿYij�
oLrs �

���� � o�ÿYij�
o�wab

����
�

o�wab

oLrs
; �C:12�

where

o�ÿYij�
o�wab

����
�

� K0

4
2 �eff

ak wkb

ÿh � wak�
eff
kb

�
�eff

ij � �eff
kk

ÿ �
daiwbk�

�
� dbiwak��eff

kj � dajwbk

ÿ � dbjwak

�
�eff

ki

�i
� G0

2
daiwbk�

h
� dbiwak���eff�2kj � �eff

ik wka�
eff
bj

�
� wkb�

eff
aj

�
� dajwbk

ÿ � dbjwak

���eff�2ki � �eff
jk wka�

eff
bi

ÿ � wkb�
eff
ai

�i
; �C:13�

and

o�wab

oLrs
� ÿ 1

8

X3

I�1

X3

J�1

1

w�I� � w�J�
s�I�a s�J�b

�
� s�J�a s�I�b

�
s�I�r s�J�s

ÿ � s�J�r s�I�s

�
: �C:14�
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